中山市金美达金属表面处理有限公司 电镀生产线技改扩建项目 环境影响报告书 (征求意见稿)

建设单位:中山市金美达金属表面处理有限公司

编制单位:中山市美斯环保节能技术有限公司

编制时间:二〇二三年九月

目录

1		前言	•				• • •			• • •	• • •	 	 	• • •	 	 • • •	 • • •	 1
	1.	1	建	设项	巨相	死况						 	 		 • • • •	 	 	 1
	1.	2	环	境影	响证	平价	过程	<u></u>				 	 		 • • • •	 	 	 2
	1.	3	关	注的	7环均	竟问	题.					 	 		 • • • •	 	 	 3
	1.	4	产	业政	策及	廴规	划框	1符性	上分	析.		 	 		 • • • •	 	 	 4
		1.4.	1	产业	政策	危的	相符	性分	析			 	 		 • • •	 	 	 4
		1.4.	2	选址	规划	引的	相符	性分	析			 	 		 • • •	 	 	 1
		1. 4.	3	项目	布启	員的	合理	性分	析			 	 		 • • •	 	 	 7
	1.	5	环	境影	响扎	及告	书的	1主要	医结	论.		 	 		 • • •	 	 	 7
2		总则	١.,									 	 		 	 	 	 8
	2.	1	编	制依	括.							 	 		 	 	 	 8
		2. 1.																
		2. 1.																
		2. 1.																
		2. 1.	4	导则	和打	支术	规范	<u>.</u>				 	 		 	 	 	 13
		2. 1.	5	其他	1有乡	も依	据.					 	 		 • • • •	 	 	 14
	2.	2	环	境功	≉能区	区划	与评	₹价析	斥准			 	 		 	 	 	 14
		2. 2.	1	地表	水玉	不境	功能	区划	IJ			 	 		 	 	 	 14
		2. 2.	2	地下	水玉	不境	功能	区划	IJ			 	 		 	 	 	 15
		2. 2.																 15
		2. 2.	4	声环	境功	力能	区划]				 	 		 • • • •	 	 	 15
		2. 2.	5	生态	环步	竟功	能区	划.				 	 		 	 	 	 15
		2. 2.	6	环境	边角	뉟属	性汇	总.				 	 		 • • • •	 	 	 16
		2. 2.	7	环境	质量	量标	准.					 	 		 	 	 	 27
		2. 2.	8	排放	[标/	隹						 	 		 • • • •	 	 	 31
	2.	3	污	染控	制具	東求	及玡	境份	k护	措施	缶	 	 		 	 	 	34

I

		2. 3.	1 污	染控制	要求		• • • •		• • • •	• • • •	 		• • • • •	 	34
		2. 3.	2 环	境保护	目标		• • • •			• • • •	 	· • • • •		 	35
	2.	4	评价	等级与	评价	范围.	• • • •				 			 	36
		2. 4.	1 评	价等级			• • • •		• • • •	• • • •	 	• • • •	• • • • •	 	36
		2. 4.	2 评	价范围	l		• • • •			• • • •	 	• • • •	• • • • •	 	50
	2.	5	环境	敏感点			• • • •			• • • •	 	• • • • •		 	51
	2.	6	评价	因子的	识别:	和筛选	匙				 	• • • • •		 	54
		2. 6.	1 大	气			• • • •				 	• • • • •		 	54
		2. 6.	2 地	表水.			• • • •			• • • •	 	• • • • •		 	54
		2. 6.	3 地	下水.			• • • •			• • • •	 	• • • • •	• • • • •	 	54
		2. 6.	4 噪	声							 	• • • • •		 	54
		2. 6.	5 土	壤			• • • •		• • • •	• • • •	 	• • • • •		 • • •	54
3		技改	扩建	前原环	评审	批内容	爻				 • • • • •	• • • • •		 • • •	56
	3.	1	历史:	环评审	批情	况					 			 • • •	56
	3.	2	原环	评审批	内容		• • • •		• • • •	• • • •	 	• • • •	• • • • •	 	57
		3. 2.	1 原	有项目	基本	情况.	• • • •				 • • • • •			 	57
		3. 2.	2 原	有项目	工程	组成.	• • • •				 • • • • •			 	57
		3. 2.	3 原	有项目	原辅	材料.	• • • •				 • • • • •			 	59
		3. 2.	4 原	有项目	设备	情况.	• • • •				 • • • • •			 	60
		3. 2.	5 原	有项目	生产	工艺》	充程.				 • • • • •			 	63
		3. 2.	6 原	有项目	产品	方案.	• • • •				 • • • • •			 	65
		3. 2.	7 原	有项目	公用	工程.	• • • •				 • • • • •			 	65
		3. 2.	8 原	有项目	污染	源分析	斤				 • • • • •			 	66
	3.	3	技改:	扩建前	项目	存在的	勺问题	及整	改措	施	 • • • •			 	70
4		技改	扩建	后项目	概况		• • • •				 			 •••	71
	4.	1	项目:	概况.			• • • •			• • • •	 	• • • • •		 	71
		4. 1.	1 基	本情况			• • • •				 	• • • • •		 	71
		4.1	2 项	月组成											72

	4. 1. 3	地理位置图、四至图及平面图	74
	4. 1. 4	原辅材料	80
	4. 1. 5	生产设备	96
	4. 1. 6	产品方案	130
	4. 1. 7	生产工艺及产污环节	137
	4. 1. 8	公用工程	156
4	.2 I	_程分析	157
	4. 2. 1	物料平衡	157
	4. 2. 2	污染源及源强分析	163
4	3	b改扩建前后对比	238
	4. 3. 1	原辅材料	238
	4. 3. 2	产品方案	239
	4. 3. 3	主要设备	240
	4. 3. 4	主要污染物"三本账"	241
4	.4 湟	情洁生产分析	242
	4. 4. 1	清洁生产定义	242
	4. 4. 2	清洁生产的要求	242
	4. 4. 3	清洁生产的途径	243
	4. 4. 4	项目清洁生产分析	243
	4. 4. 5	项目清洁生产评价分析	245
	4. 4. 6	环境管理要求	250
	4. 4. 7	清洁生产评价结论	250
5	环境现	见状调查与评价	251
F	5.1 É	月然环境概况	9E1
٠	·	地理位置	
		地质地貌	
		本文状况	
			254 255
		TEXAS THE THE TIME THE TIME.	/.:I:N

	5.	2	大	气环境现状	调查与评	价					• • • • •	255
		5. 2.	1	区域环境质	量状况				• • • • • • •			255
		5. 2.	2	环境空气质	量补充监	测			• • • • • • • •			258
	5.	3	地	表水现状调	查与评价				• • • • • • • •			267
	5.	4	地	下水环境现	状调查与	评价			• • • • • • • •			267
		5. 4.	1 .	监测布点					• • • • • • •			267
		5. 4.	2	监测项目				• • • • • • • •	• • • • • • •	• • • • • • •		268
		5. 4.	3	采样及分析	方法			• • • • • • •	• • • • • • •			268
		5. 4.	4 :	地下水环境	现状评价			• • • • • • •	• • • • • • • •			271
	5.	5	土:	壤环境现状	调查与评	价			• • • • • • • •			274
		5. 5.	1	评价范围				• • • • • • • •	• • • • • • •			274
		5. 5.	2	监测布点				• • • • • • • •	• • • • • • •			274
		5. 5.	3	监测因子				• • • • • • • •	• • • • • • •			277
		5. 5.	4	监测频次				• • • • • • • •	• • • • • • •	• • • • • • •		277
		5. 5.	5	采样和分析	方法			• • • • • • • •	• • • • • • •			277
		5. 5.	6	评价标准				• • • • • • •	• • • • • • •	• • • • • • •		279
		5. 5.	7	检测结果及	分析				• • • • • • •			279
	5.	6	环:	境噪声现状	调查与评	价			• • • • • • • • •			285
		5. 6.	1	评价标准					• • • • • • •			285
		5. 6.	2	监测点位					• • • • • • •			285
		5. 6.	3	监测方法				• • • • • • • • • • • • • • • • • • • •	• • • • • • •		• • • • •	285
		5. 6.	4	监测时间与	频次			• • • • • • • • •	• • • • • • •			285
		5. 6.	5	监测结果				• • • • • • • •	• • • • • • •			286
6		环境	影	响预测与评	价			• • • • • • • •				286
	6.	1	施	工期的环境	影响预测	与评价.						286
	6.	2	运	营期大气环	境影响预	测与评的	ት					286
		6. 2.	1	气象特征					• • • • • • •			286
		6. 2.	2	大气环境影	响预测				• • • • • • •			305
		6 2	3	污染物排放	量核質							348

	6.3	运营期水环境影响评价	348
	6. 3.	1 水污染物产生及排放情况	348
	6. 3.	2 污水处理方案	348
	6. 3.	3 水环境影响评价小结	355
	6. 4	运营期噪声影响预测与评价	357
	6. 4.	1 主要噪声源	357
	6. 4.	2 预测模式	358
	6. 4.	3 评价标准	359
	6. 4.	4 预测结果与分析	360
	6. 5	运营期固体废物影响分析	361
	6. 5.	1 项目固体废物产生种类及处理措施	361
	6. 5.	2 固体废物的危害分析	361
	6. 5.	3 危险废物公路运输事故危害分析	361
	6. 5.	4 固体废物污染控制分析	361
	6. 5.	5 危险废物转移污染控制分析	362
	6.6	运营期地下水环境影响评价	363
	6. 6.	1 水文地质概况	363
	6. 6.	2 地下水环境影响预测与评价	367
	6. 6.	3 地下水污染防治措施	371
	6. 7	运营期土壤环境影响评价	372
	6. 7.	1 建设项目土壤影响途径识别	372
	6. 7.	2 土壤环境影响预测	373
	6.8	运营期生态影响分析	377
	6. 9	环境风险影响评价	378
	6. 9.	1 环境风险识别	378
	6. 9.	2 大气环境风险影响分析	383
	6. 9.	3 地表水、地下水、土壤环境风险影响分析	383
	6. 9.	4 危险化学品、危险废物的储存和使用风险	384
7	污染	· ·控制措施及技术可行性分析	385

	7.1 废气污染控制措施及其可行性分析	. 385
	7.1.1 废气收集措施	. 385
	7.1.2 废气处理措施	. 388
	7.2 废水污染控制措施及其可行性分析	. 391
	7.2.1 生活污水污染控制措施及其可行性分析	. 391
	7.2.2 生产废水污染控制措施及其可行性分析	. 393
	7.3 噪声污染控制措施及其可行性分析	. 413
	7.4 固体废物污染控制措施及其可行性分析	. 414
	7.4.1 固体废物处理处置措施	. 414
	7.4.2 固体废物处理措施技术可行性论证	. 414
	7.5 环境风险防范措施及应急要求	. 415
	7.5.1 风险管理及减缓措施	. 415
	7.5.2 危险化学品事故防范措施	. 418
	7.5.3 危险废物贮存泄漏事故风险防范措施	. 420
	7.5.4 地表水环境风险防范措施	. 420
	7.5.5 地下水环境风险防范	. 422
	7.5.6 大气环境风险防范	. 423
	7.5.7 应急预案	. 423
	7.5.8 项目应急措施	. 428
	7.5.9 环境风险评价小结	. 432
8	环境影响经济损益分析	. 434
	8.1 项目投资成本	. 434
	8.2 环境影响损失	. 434
	8.2.1 大气环境影响损失	. 434
	8.2.2 水环境影响损失	. 435
	8.2.3 声环境影响损失	. 436
	8.2.4 固体废物影响损失	. 436
	8.2.5 社会经济效益分析	. 436
	8.2.6 环境经济效益分析	437

	8.	3	小	结	• • •	• • • •	• • • • •		• • • •	• • • •	 	• • • • •		• • • •		437
9		环境	管	理与』	左测·	计划					 	• • • • •			• • • • • •	438
	9.	1	环	境管理	里						 	• • • • •		• • • • •		438
		9. 1.	1	环境』	左测	的任	务				 	• • • • •			• • • • • •	438
		9. 1.	2	环境份	呆护	管理	机构及	职责			 	• • • • •			• • • • • •	438
		9. 1.	3	环境管	き理:	要求				• • • •	 • • • •	• • • • •		• • • • •		439
		9. 1.	4	环境管	9理	目标				• • • •	 • • • •	• • • • •				440
		9. 1.	5	建立环	不境	管理	体系.				 	• • • • •				440
		9. 1.	6	环境管	き理.	机构	与职责				 	• • • • •	• • • • •		• • • • • •	442
		9. 1.	7	建立和	斗学	的环	境管理	体系			 	• • • • •				443
	9.	2	污	染物排	非放	清单	管理要	求			 	• • • • •				444
		9. 2.	1	工程组	且成	要求					 • • • • •	• • • • •				444
		9. 2.	2	原辅材	才料:	组分	要求.				 	• • • • •				444
		9. 2.	3	环境份	呆护:	措施	及主要	运行	参数	• • • •	 	• • • • •				445
		9. 2.	4	排放的	勺污	染物	种类、	排放	浓度		 	• • • • •			• • • • • •	446
		9. 2.	5	污染物	勿总	量控	制指标	÷			 	• • • • •			• • • • • •	448
		9. 2.	6	污染物	勿排:	放的	分时段	要求			 	• • • • •			• • • • • •	449
		9. 2.	7	排污口	1信	息及	相应执	.行的	环境	标准	 		• • • • •			449
		9. 2.	8	环境区	《险	防范	及环境	监测			 	• • • • •				450
		9. 2.	9	社会公	公开	的信	息内容				 	• • • • •				451
	9.	3	环	境监测	则计	划				• • • •	 • • • •	• • • • •		• • • • •		451
		9. 3.	1	环境质	重	监测	计划.				 	• • • • •				451
		9. 3.	2	污染》	原监	测计	划			• • • •	 • • • •	• • • • •				451
		9. 3.	3	非正常	常排:	放状	况监测	l			 	• • • • •				451
		9. 3.	4	监测数	发据:	分析	与管理	<u></u>			 	• • • • •				452
		9. 3.	5	三同时	寸验	收表					 	• • • • •				453
10)	环境	影	响评的	介结	论					 	• • • • •		· • • • •	• • • • • •	458
	10) 1	Т	程概》	₸.											458

10	. 2	环	境质	量	现》	状え	┝析	• •					• •	 	 	 	• •	 	 	 • •	•	 	 	• •	459
10	. 3	环	境景	响	预	则与	可评	价					•	 	 	 		 	 	 •		 	 		460
10	. 4	环	境保	护	措力	施.	• • •							 	 	 		 	 	 	• •	 	 		461
	10.	4. 1	大	气	污	染物	协防	治	措	施				 	 	 		 	 	 	•	 	 		461
	10.	4. 2	办	污	染织	物质	方治	措	施					 	 	 	• •	 	 	 •	•	 	 		462
	10.	4. 3	啽	声	污	染物	协防	治	措	施				 	 	 		 	 	 	•	 	 		462
	10.	4. 4	固	废	污	染物	协防	治	措	施				 	 	 		 	 	 • •	•	 	 		463
	10.	4. 5	进	址	合	理台	法	性	评	价	结	论	•	 	 	 	•	 	 	 •		 	 		463
10	. 5	公	众参	与	结	论.	• • •	· • •						 	 	 	• •	 	 	 	•	 	 		463
10	. 6	总	结论	٠.										 	 	 		 	 	 		 	 		463

1 前言

1.1建设项目概况

中山市金美达金属表面处理有限公司(以下简称"金美达公司")位于中山市三角镇高平化工区,从事五金电镀件、塑料电镀件、首饰饰品生产,镀种涉及铜、镍、仿金、锌、铬、金、银,金美达公司于 2002 年获得中山市环境保护局审批(中环建[2002]95 号),原审批建设自动、手动镀锌线各 1 条,脉冲开关电源 14 台、可控硅电源 11 台、过滤机 19 台、冷水机 1 台、干燥烘道 1 条(燃柴油)、热水炉 3 台(燃柴油)、抽风系统 4 套和压缩机 3 台,准许排放生产废水 280 吨/天至三角镇高平污水处理有限公司处理;金美达公司于 2006 年进行扩建,2006 年获得中山市环境保护局审批(中环建表[2006]1175 号),审批建设 4 条电镀生产线:自动垂直式五金镀锌电镀生产线 1 条、镀银(金)电镀生产线 1 条、塑胶电镀生产线 1 条、五金镀镍(铬)仿金电镀线 1 条;金美达公司于 2013 年进行技改扩建,获得中山市环境保护审批(中环建书[2013]105 号),审批建设 5 条电镀生产线:自动垂直式五金镀锌电镀生产线 1 条、镀银(金)电镀生产线 1 条、五金镀镍(铬)仿金电镀线 1 条、ABS 自动电镀线 2 条、准许排放生产废水 237.5 吨/天(71250 吨/年)、生活污水 36.9 吨/天(11070 吨/年)。

由于生产那时建设的生产线无法满足市场发展需求,该厂已于 2017 年停产,并拆除了原有设备,公司的电镀业务暂时为全部委外加工。为了保证生产业务的顺利进行,现金美达公司拟重新启动建设,将公司的生产线全部进行升级改造,引进先进的电镀生产线,技改扩建后的金美达公司拟设置 25 条电镀生产线(其中 21 条端子线、1 条塑胶线及 3 条其他五金线)及 6 条辅助生产线(分别为: 8 条端子连续镀镍金锡自动线、2 条端子连续镀铜镍金锡自动线、9 条端子连续镀镍钯金锡自动线、1 条挂镀镍铬半自动线、1 条端子连续镀银自动线、1 条端子连续镀镍钯金铑钌自动线、1 条电铸镍半自动线、1 条型胶挂镀铜镍铬自动线、1 条滚镀铜镍金锡半自动线、1 条连续电泳半自动线、1 条水转印线、1 条 TypeC 滚筒研磨手动线、1 条 C70 滚筒研磨手动线、

1条散件清洗手动线、1条磁力研磨手动线),工件总电镀面积 119.45 万 m^2/a ; 产生生产废水 237.28 $\mathrm{t/d}$ 。

根据《中华人民共和国环境影响评价法》、《中华人民共和国环境保护法》、《建设项目环境保护管理条例》和《建设项目环境影响评价分类管理名录》等建设项目环境保护管理的有关法律法规,一切可能对环境产生影响的新建、扩建或建设项目均必须实行环境影响评价审批制度。受建设单位委托,中山市美斯环保节能技术有限公司承担该建设项目的环境影响评价工作。评价单位于2021年10月组织人员对建设项目选址进行了资料调查和现场勘察。在此基础上,按照国家有关环境影响评价工作的行政法规和技术规范,编制本环境影响报告书。

1.2环境影响评价过程

根据《环境影响评价技术导则总纲》(HJ2.1-2016)的要求,本项目环评的工作程序见下图。

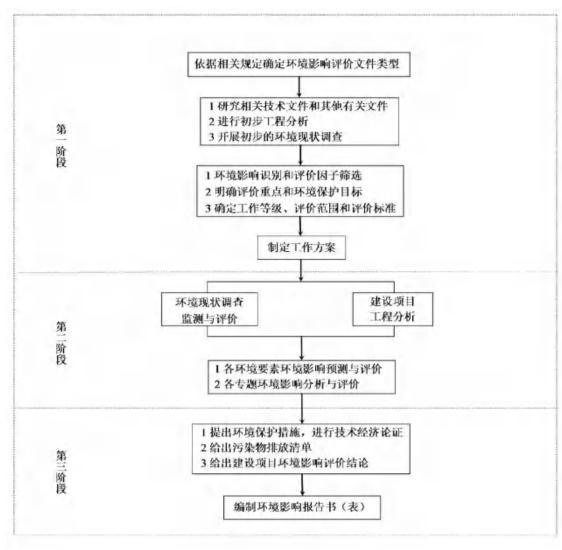


图 1.2-1 项目环评工作流程

1.3关注的环境问题

根据项目污染物排放特征及项目所在地环境质量现状,本项目评价重点关注问题为:

- (1) 项目所在区域环境质量状况;
- (2)项目运营期间污染物产生、排放情况,拟采取的环保对策措施及其可行性 分析;
 - (3) 项目废气、废水、噪声能否做到达标排放,固废是否得到有效处置;
- (4)项目污染物排放是否对周边环境造成明显的污染影响,特别关注废气废水排放对周边环境敏感目标的影响;

- (5)项目建设与所在地区规划相容性的分析,项目建设与产业政策相符性分析,环境风险是否可以接受;
 - (6) 项目是否满足总量控制要求。

1.4产业政策及规划相符性分析

1.4.1 产业政策的相符性分析

(1) 与《产业结构调整指导目录》(2019年本)的相符性分析

根据建设单位提供资料,本项目生产范围主要包括镀金、镀银、镀镍、镀锡、镀钯、镀铬、镀钌铑等,根据《产业结构调整指导目录(2019年本)》,淘汰类电镀工艺为"含有毒有害氰化物电镀工艺(电镀金、银、铜基合金及予镀铜打底工艺除外)、含氰沉锌工艺",本项目无含氰沉铜生产工艺,在电镀金、银中使用氰化亚金钾和氰化银钾,其他种类镀层中未使用有毒有害氰化物。根据《国家发展改革委关于暂缓执行 2014年底淘汰氰化金钾电镀金及氰化亚金钾镀金工艺规定的通知》(发改产业[2013]1850号): "为满足镀金企业正常生产需要,经研究决定,暂缓执行《国家发展改革委关于修改〈产业结构调整指导目录(2011年本)〉有关条款的决定》(第21号令)第三十五条 2014年底淘汰氰化金钾电镀金及氰化亚金钾镀金工艺的规定"。本项目设置专业电镀,不属于"限制类"及"淘汰类",符合国家的产业发展政策。

(2) 与《市场准入负面清单》(2022年版)的相符性分析

根据《市场准入负面清单》(2019 年版)(发改体改〔2019〕1685 号)中规定。 本搬迁技改扩建项目属于许可准入类,符合《市场准入负面清单》(2019 年版)。

(3) 与《产业发展与转移指导目录》(2018年本)的相符性分析

根据《产业发展与转移指导目录》(2018 年本)(中华人民共和国工业和信息化部 2018 年第 66 号)中规定。本搬迁技改扩建项目不属于广东省引导逐步调整退出的产业,符合《产业发展与转移指导目录》(2018 年本)。

(4) 与《电镀行业规范条件》的相符性

为加强重金属污染防治,遏制高耗能、高污染、低效率生产,推进电镀行业产业结构调整和转型升级,促进电镀行业可持续健康发展,工信部制定了《电镀行业规范条件》(2015 年第64号),2015年11月1日起施行。

表 1.4-1 项目与电镀行业规范条件符合性

电镀行业规范条件要求	本项目概况	相符性
一、产业	 布局	•
"…在已有电镀集中区的地市,新建专业电镀企业原则上应全部进入电镀集中区。企业各类污染物(废气、废水、固体废物、厂界噪声)排放标准与处置措施均符合国家和地方环保标准的规定"	项目位于中山市三角镇高平化工区的五金加工区,该基地是中山市政府批准设立的中山市域2个电镀定点基地之一。该项目采取有效措施后污染物排放标准与处置措施均符合国家和地方环保标准的规定	符合
二、规模、工	艺和装备	
(一)电镀企业规模必须满足下列条件之一: (1)电镀生产环节包括清洗槽在内的槽液总量不少于 30000 升; (2)电镀生产年产值在 2000 万元以上; (3)单位作业面积产值不低于 1.5 万元/平方米; (4)作为中间工序的企业自有车间不受规模限制; (二)企业选用低污染、低排放、低能耗、低水耗、经济高效的清洁生产工艺,推广使用《国家重点行业清洁生产技术导向目录》的成熟技术。无《产业结构调整指导目录》淘汰类的生产工艺和本规范条件规定的淘汰落后工艺、装备和产品	(1)本项目电镀生产环节包括清洗槽在内的槽液总量>30000L (2)项目年产值>2000万元 (3)单位作业面积产值不低于1.5万元/平方米 拟建项目无《产业结构调整指导目录》淘汰的生产工艺和本规范条件规定的淘汰落后工艺、装备和产品;企业选用低污染、低排放、低能耗、低水耗、经济高效的清洁生产工艺,清洁生产水平符合"《电镀行业清洁生产评价指标》(中华人民共和国国家发展和改革委员会中华人民共和国环境保护部中华人民共和国工业和信息化部公告2015年第25号)"的要求	符合
(三)品种单一、连续性生产的电镀企业要求自动生产线、半自动生产线达到70%以上	自动生产线所占比例 100%	
(四) 生产区域地面防腐、防渗、防积液, 生产线 有槽间收集遗洒镀液和清洗液装置	项目生产区域地面防腐、防渗、防积液, 生产线设有槽间收集遗洒镀液和清洗液 装置	
(五)新(扩)建项目生产线配有多级逆流漂洗、喷淋等节水装置及槽液回收装置,槽、罐、管线按"可视、可控"原则布置,并设有相应的防破损、防腐蚀等防护措施	项目生产线配有多级逆流漂洗及槽液回 收装置,槽、管线按"可视、可控"原则 布置,管线均为明管布置,并设有相应的 防破损、防腐蚀等防护措施	
(六)新(扩)建电镀项目根据加工零部件的品种、数量等优先选用高效低耗连续式处理设备,并达到电镀行业清洁生产标准中II级指标以上水平	项目可达到电镀行业清洁生产标准中 I 级指标	
三、资源	消耗	
(一)电镀企业(除热浸镀企业以外企业)有重金属和水资源循环利用设施; (1)镀铜、镀镍、镀硬铬以及镀贵金属等生产线配备工艺技术成熟的带出液回收槽等回收设施; (2)电镀企业单位产品每次清洗取水量不超过0.04吨/平方米,水的重复利用率在30%以上	(1)项目镀铜、镀镍、镀铬生产线配备带出液回收槽; (2)项目单位产品每次清洗取水量为0.00510t/m²,水的重复利用率60%	符合
四、环境	保护	
(一)企业符合环保法律法规要求,依法获得排污	企业按照已获得的总量排放污染物,计划	符

等可能,并按照指字许可证的要求排放污染物,定期开展清洁生产审核及评估验收工作 例用展清洁生产审核并通过评估验收			
(二)企业有废气净化装置,废气排放符合国家或 地方大气污染物排放标准 (三)企业有合格废水处理设施。电镀企业和拥有 电镀设施企业经处理后的废水符合国家《电镀污染物排放标准》(GB1900)有关水污染物排放限位 要求或地方水污染物排放标准,抗放的液法要公 众监督、其余纳入本规范条件的企业符合《污水综 合排放标准》(GB8978)或地方水污染物排放限位 要求 (GB8978)或地方水污染物排放限位 要求 (GB8978)或地方水污染物排放限位 要求 (GB8978)或地方水污染物排放限位 要求 (四)企业产生的危险废物按照《国家危险废物名 灵》和《危险废物贮不污染控制标准》(GB18597),设置规范的分类收集容器进行分类收集,控由有处置 相关危险废物资质的机构处置,轰励企业或危险废物经期机构进行资源再生或再利用。 (五)厅果晚声符合《工业企业厂开噪声标准》(GB12348)要求 五、安全、那业卫生 (一)企业遵守《中华人民共和国安全生产法》,(保生的安全生产和职业卫生管理制度,技术可放进和国家标准或行业标准规定的安全生产、职业卫生防护条件 (二)有健全的危险化学品管理制度 (三)全业有职业病防护设施,从业人员配备符合国家标准制定安全生产、职业卫生防护条件 (二)有健全的危险化学品管理制度 (三)企业有职业病防护设施,从业人员配备符合国家标准制定安全生产、职业卫生防护条件 (二)有健全的危险化学品管理制度 (三)企业有职业病防护设施,从业人员配备符合国家标准制定安全生产、职业卫生防护条件 (二)有健全的危险化学品管理制度 (三)企业有职业病防护设施,从业人员配备符合国家标准制定安全生产、职业卫生防护条件 (二)有健全的危险化学品管理制度 (三)企业有职业病防护设施,从业人员配备符合国家标准制定安全生产、职业卫生防护条件 (二)有健全的危险化学品管理制度 (三)企业有职业病防护设施,为业人员配备符合国家标准制定安全企业有职业主检查。企业每年发生资产,使用,其将健全完善职业病防护设施 每十年健主的产业,是有关的企业,是有关键,是有关的企业,是有关键,是有关键,是有关的企业,是有关的企业,是有关的企业,是有关的企业,是有关的企业,是有关的企业,是有关的企业,是有关键。是有关的企业,是有关键,是有关键,是有关键,是有关键,是有关键,是有关键,是有关键,是有关键		清洁生产审核及评估验收工作	合
电镀设施企业经处理后的废水符合国家《电镀污染物排放标准》(GB121900)有关水污染物排放限值	(二)企业有废气净化装置,废气排放符合国家或		
物排放标准》(GB21900)有关水污染物排放限值			
要求或地方水污染物排放标准,排放的废水接受公			
值要求 ——			
他方标准《电镀水污染物排放标准》 (DB4/4/1597-2015)中表 2 排放限值要求 后排入洪奇沥水道 (四) 企业产生的危险废物按照《国家危险废物名 录》和《危险废物贮存污染控制标准》(GB18597), 设置规范的分类收集客器进行分类收集,并按照 《危险废物转移联单管理办法》要求,交由有处置 相关危险废物资质的机构处置,数励企业或危险废物处理机构进行资源再生或再利用。 (五)厂界噪声符合《工业企业厂界噪声标准》 (GB12348)要求 ———————————————————————————————————	合排放标准》(GB8978)或地方水污染物排放限		
(四)企业产生的危险废物按照《国家危险废物名	值要求		
(四)企业产生的危险废物按照《国家危险废物名 录》和《危险废物以存污染控制标准》(GB18597),设置规范的分类收集存器进行分类收集,并按照 《危险废物资质的机构处置,鼓励企业或危险废物处理机构进行资源再生或再利用。 (五)厂界噪声符合《工业企业厂界噪声标准》(GB12348)要求 (GB12348)要求 (GB12348)更求 (GB1248 (GE0248 (GE0248 (GE0248 (GE024			
(四)企业产生的危险废物按照《国家危险废物名 录》和《危险废物贮存污染控制标准》(GB18597),设置规范的分类收集容器进行分类收集,并按照《危险废物资质的机构处置,数励企业或危险废物处理机构进行资源再生或再利用。 (五)厂界噪声符合《工业企业厂界噪声标准》(GB12348)要求 (一)企业遵守《中华人民共和国安全生产法》、《中华人民共和国职业病防治法》等法律法规,有健全的安全生产和职业卫生管理制度;具备有关法律、行政法规和国家标准或行业标准规定的安全生产、职业卫生防护条件(二)有健全的危险化学品管理制度 (三)企业有职业病防护设施,从业人员配备符合国家标准的劳动防护品,定期开展职业卫生检查。企业每年组织有毒有害岗位职工体检,体检覆盖率达到100% (四)新(扩)建项目安全设施和职业病防护设施,从业人员配备符合国家标准的劳动防护品,定期开展职业卫生检查。企业每年组织有毒有害岗位职工体检,体检覆盖率达到100% (四)新(扩)建项目安全设施和职业病防护设施,从业人员配备符合国家标准的劳动防护品,定期开展职业卫生检查。企业每年组织有毒有害岗位职工体检,体检覆盖率达到100% (四)新(扩)建项目安全设施和职业病防护设施,项目将健全完善职业病防护设施将与主体工程同时设计、同时施工、同时投入使用项目即将制定突发安全事故应急预案,并向当地安全生产监管部门报备(六)企业定期对员工进行安全和职业卫生教育均当地安全生产监管部门报备(六)企业定期对员工进行安全和职业卫生教育方、人员素质生产、废水处理等岗位员工经专业技能培训,获得行业培训机构颁发的合格证书。特殊岗位操作人员取得相关工种职业技能鉴定等级证书,持证上岗。企业有中级及以上职称的技术管理人相关工种职业技能鉴定等级证书,持证上岗。企业有中级及以上职称的技术管理人周、企业有中级及以上职称的技术管理人			
录》和《危险废物贮存污染控制标准》(GB18597),设置规范的分类收集容器进行分类收集,并按照《危险废物转移联单管理办法》要求、交由有处置相关危险废物资质的机构处置,鼓励企业或危险废物处理机构进行资源再生或再利用。 (五)厂界噪声符合《工业企业厂界噪声标准》(GB12348)要求 ———————————————————————————————————	(四)企业产生的危险废物按照《国家危险废物名		
《危险废物转移联单管理办法》要求,交由有处置相关危险废物资质的机构处置,鼓励企业或危险废物处理机构进行资源再生或再利用。 (五)厂界噪声符合《工业企业厂界噪声标准》 (GB12348)要求 ———————————————————————————————————			
相关危险废物资质的机构处置,鼓励企业或危险废物处理机构进行资源再生或再利用。 (五)厂界噪声符合《工业企业厂界噪声标准》 (GB12348)要求 五、安全、职业卫生 (一)企业遵守《中华人民共和国安全生产法》、《中华人民共和国职业病防治法》等法律法规,有健全的安全生产和职业卫生管理制度,具备有关法模、行政法规和国家标准或行业标准规定的安全生产、职业卫生防护条件 (二)有健全的危险化学品管理制度 (三)企业有职业病防护设施,从业人员配备符合国家标准的劳动防护品,定期开展职业卫生检查。企业每年组织有毒有害岗位职工体检,体检覆盖率达到100% (四)新(扩)建项目安全设施和职业病防护设施 (四)新(扩)建项目安全设施和职业病防护设施 (四)新(扩)建项目安全设施和职业病防护设施 (四)新(扩)建项目安全设施和职业病防护设施 (四)新(扩)建项目安全设施和职业病防护设施 (四)新(扩)建项目安全设施和职业病防护设施 (四)新(扩)建项目安全设施和职业病防护设施 (四)新(扩)建项目安全设施和职业病防护设施 (五)企业应制定突发安全事故应急预案,并向当地安全生产监管部门报各 (六)企业定期对员工进行安全和职业卫生教育 (本工程同时设计、同时施工、同时投入使用 (五)企业应制定突发安全事故应急预案,并向当地安全生产监管部门报各 (六)企业定期对员工进行安全和职业卫生教育 (本工程同时设计、同时施工、同时投入使用用)项目即将制定突发安全事故应急预案,并向当地安全生产监管部门报各 (六)企业定期对员工进行安全和职业卫生教育 (本工程同时设计、同时施工、同时投入使用用)组安全生产监管部门报各 (六)企业定期对员工进行安全和职业卫生教育 (本工程同时设计、同时施工、同时投入使用用)组安全生产监管部门报各 (方)企业定期对员工进行安全和职业卫生教育		物资质的机构处置	
物处理机构进行资源再生或再利用。			
(五)厂界噪声符合《工业企业厂界噪声标准》 (GB12348)要求 五、安全、职业卫生 (一)企业遵守《中华人民共和国安全生产法》、 《中华人民共和国职业病防治法》等法律法规,有 度,按照相关法律、行政法规和国家标准 或行业标准规定的安全生产、职业卫生防护条件 (二)有健全的危险化学品管理制度 (三)企业有职业病防护设施,从业人员配备符合国家标准的护设施,从业人员配备符合国家标准的护设施,从业人员配备符合国家标准的护设施,是期开展职业卫生检查。企业每年组织有毒有害岗位职工体检,体检覆盖率达到 100% (四)新(扩)建项目安全设施和职业病防护设施 (四)新(扩)建项目安全设施和职业病防护设施 (四)新(扩)建项目安全设施和职业病防护设施 (五)企业应制定突发安全事故应急预案,并向当地安全生产监管部门报备 (六)企业定期对员工进行安全和职业卫生教育 (元)企业应制定突发安全事故应急预案,并向当地安全生产监管部门报备 (六)企业定期对员工进行安全和职业卫生教育 大、人员素质 生产、废水处理等岗位员工经专业技能培训,获得行业培训机构颁发的合格证书。特殊岗位操作人员取得相关工种职业技能鉴定等级证书,持证上岗。企业有中级及以上职称的技术管理人			
 (GB12348)要求 (GB12348)2类标准要求 五、安全、职业卫生 (一)企业遵守《中华人民共和国安全生产法》、《中华人民共和国职业病防治法》等法律法规,有健全的安全生产和职业卫生管理制度;具备有关法律、行政法规和国家标准或行业标准规定的安全生产、职业卫生防护条件 (二)有健全的危险化学品管理制度 (二)有健全的危险化学品管理制度 (三)企业有职业病防护设施,从业人员配备符合国家标准的劳动防护品,定期开展职业卫生检查企业每年组织有毒有害岗位职工体检,体检覆盖率达到100% (四)新(扩)建项目安全设施和职业病防护设施和联业病防护设施知度工工程同时设计、同时施工、同时投入使用 (五)企业应制定突发安全事故应急预案,并向当地安全生产监管部门报备 (六)企业定期对员工进行安全和职业卫生教育 六、人员素质 生产、废水处理等岗位员工经专业技能培训,获得行业培训机构颁发的合格证书。特殊岗位操作人员取得相关工种职业技能鉴定等级证书,持证上岗。企业有中级及以上职称的技术管理人 (石)企业中级及以上职称的技术管理人 		 厂界噪声符合《工业企业厂界噪声标准》	
(一)企业遵守《中华人民共和国安全生产法》、《中华人民共和国职业病防治法》等法律法规,有 度,按照相关法律、行政法规和国家标准 或行业标准规定的安全生产、职业卫生防护条件 (二)有健全的危险化学品管理制度 项目将健全危险化学品管理制度 项目将健全危险化学品管理制度 项目将健全危险化学品管理制度 项目将健全危险化学品管理制度 项目将健全完善职业病防护设施 项目将健全完善职业病防护设施 项目将健全完善职业病防护设施 项目将健全完善职业病防护设施 项目安全设施和职业病防护设施 项目安全设施和职业病防护设施 项目安全设施和职业病防护设施 项目安全设施和职业病防护设施 两目的设计、同时施工、同时投入使 用 第一次企业应制定突发安全事故应急预案,并向当 地安全生产监管部门报备 (六)企业应制定突发安全事故应急预案,并向当 地安全生产监管部门报备 (六)企业定期对员工进行安全和职业卫生教育 页目将产格执行"生产、废水处理等岗位 万业培训机构颁发的合格证书。特殊岗位操作人员取得相关工种职业技能鉴定等级证书,持证上岗。企业有中级及以上职称的技术管理人			
《中华人民共和国职业病防治法》等法律法规,有 度,按照相关法律、行政法规和国家标准 或行业标准制定安全生产、职业卫生防护 条件 (二)有健全的危险化学品管理制度 项目将健全危险化学品管理制度 项目将健全危险化学品管理制度 项目将健全完善职业病防护设施 公业每年组织有毒有害岗位职工体检,体检覆盖率达到100% (四)新(扩)建项目安全设施和职业病防护设施 必须与主体工程同时设计、同时施工、同时投入使 用 (五)企业应制定突发安全事故应急预案,并向当 地安全生产监管部门报备 (六)企业应制定突发安全事故应急预案,并向当 地安全生产监管部门报备 项目将定期对员工进行安全和职业卫生教育 项目将定期对员工进行安全和职业卫生教育 项目将定期对员工进行安全和职业卫生教育 项目将定期对员工进行安全和职业卫生教育 项目将定期对员工进行安全和职业卫生教育 项目将定期对员工进行安全和职业卫生教育 项目将产格执行"生产、废水处理等岗位员工经专业技能培训,获得行业培训机构颁发的合格证书。特殊岗位操作人员取得相关工种职业技能鉴定等级证书,持证上岗。企业有中级及以上职称的技术管理人员 。企业有中级及以上职称的技术管理人	五、安全、耳	只业卫生	
健全的安全生产和职业卫生管理制度;具备有关法律、行政法规和国家标准或行业标准规定的安全生产、职业卫生防护条件 (二)有健全的危险化学品管理制度 (三)企业有职业病防护设施,从业人员配备符合国家标准的劳动防护品,定期开展职业卫生检查。企业每年组织有毒有害岗位职工体检,体检覆盖率达到100% (四)新(扩)建项目安全设施和职业病防护设施必须与主体工程同时设计、同时施工、同时投入使用 (五)企业应制定突发安全事故应急预案,并向当地安全生产监管部门报备 (六)企业应制对员工进行安全和职业卫生教育 大、人员素质 生产、废水处理等岗位员工经专业技能培训,获得行业培训机构颁发的合格证书。特殊岗位操作人员取得相关工种职业技能鉴定等级证书,持证上岗。企业有中级及以上职称的技术管理人员			
律、行政法规和国家标准或行业标准规定的安全生产、职业卫生防护条件 (二)有健全的危险化学品管理制度 (三)企业有职业病防护设施,从业人员配备符合国家标准的劳动防护品,定期开展职业卫生检查。企业每年组织有毒有害岗位职工体检,体检覆盖率达到100% (四)新(扩)建项目安全设施和职业病防护设施 项目安全设施和职业病防护设施将与主体工程同时设计、同时施工、同时投入使用 (五)企业应制定突发安全事故应急预案,并向当地安全生产监管部门报备 (六)企业定期对员工进行安全和职业卫生教育 大、人员素质 生产、废水处理等岗位员工经专业技能培训,获得行业培训机构颁发的合格证书。特殊岗位操作人员取得相关工种职业技能鉴定等级证书,持证上岗。企业有中级及以上职称的技术管理人			
产、职业卫生防护条件 (二)有健全的危险化学品管理制度 (三)企业有职业病防护设施,从业人员配备符合国家标准的劳动防护品,定期开展职业卫生检查。企业每年组织有毒有害岗位职工体检,体检覆盖率达到100% (四)新(扩)建项目安全设施和职业病防护设施 项目安全设施和职业病防护设施将与主必须与主体工程同时设计、同时施工、同时投入使用			
(三)企业有职业病防护设施,从业人员配备符合国家标准的劳动防护品,定期开展职业卫生检查。企业每年组织有毒有害岗位职工体检,体检覆盖率达到100% (四)新(扩)建项目安全设施和职业病防护设施项目安全设施和职业病防护设施项与主体工程同时设计、同时施工、同时投入使用		水口	
国家标准的劳动防护品,定期开展职业卫生检查。企业每年组织有毒有害岗位职工体检,体检覆盖率达到 100% (四)新(扩)建项目安全设施和职业病防护设施 项目安全设施和职业病防护设施将与主必须与主体工程同时设计、同时施工、同时投入使用 用		项目将健全危险化学品管理制度	
企业每年组织有毒有害岗位职工体检,体检覆盖率 达到 100% (四)新(扩)建项目安全设施和职业病防护设施 项目安全设施和职业病防护设施将与主 必须与主体工程同时设计、同时施工、同时投入使 用 (五)企业应制定突发安全事故应急预案,并向当 项目即将制定突发安全事故应急预案,并 向当地安全生产监管部门报备 (六)企业定期对员工进行安全和职业卫生教育 ***********************************		项目将健全完善职业病防护设施	
达到 100% (四)新(扩)建项目安全设施和职业病防护设施 项目安全设施和职业病防护设施将与主 项目安全设施和职业病防护设施将与主体工程同时设计、同时施工、同时投入使用 符 (五)企业应制定突发安全事故应急预案,并向当地安全生产监管部门报备 项目即将制定突发安全事故应急预案,并向当地安全生产监管部门报备 项目将定期对员工进行安全和职业卫生教育 项目将定期对员工进行安全和职业卫生教育 六、人员素质 工经专业技能培训,获得行业培训机构颁发的合格证书。特殊岗位操作人员取得有关工种职业技能鉴定等级证书,持证上岗。企业有中级及以上职称的技术管理人员 项目将严格执行"生产、废水处理等岗位员工经专业技能培训,获得行业培训机构颁发的合格证书。特殊岗位操作人员取得相关工种职业技能鉴定等级证书,持证上岗。企业有中级及以上职称的技术管理人			
(四)新(扩)建项目安全设施和职业病防护设施 项目安全设施和职业病防护设施将与主 必须与主体工程同时设计、同时施工、同时投入使 用 (五)企业应制定突发安全事故应急预案,并向当 项目即将制定突发安全事故应急预案,并 向当地安全生产监管部门报备 (六)企业定期对员工进行安全和职业卫生教育 项目将定期对员工进行安全和职业卫生教育			
必须与主体工程同时设计、同时施工、同时投入使用 (五)企业应制定突发安全事故应急预案,并向当地安全生产监管部门报备 (六)企业定期对员工进行安全和职业卫生教育 (六)企业定期对员工进行安全和职业卫生教育 (六)企业定期对员工进行安全和职业卫生教育 (六)企业定期对员工进行安全和职业卫生教育 (方)企业定期对员工进行安全和职业卫生教育 (方)企业定期对员工进行安全和职业卫生教育 (方)企业定期对员工进行安全和职业卫生教育 (方)企业定期对员工进行安全和职业卫生教育 (方)企业定期对员工进行安全和职业卫生教育 (方)企业定期对员工进行安全和职业卫生教育 (方)企业有中级及过上职称的技术管理人员 (方)企业有中级及以上职称的技术管理人员 (方)企业有中级及以上职称的技术管理人		项目安全设施和职业病防护设施将与主	
(五)企业应制定突发安全事故应急预案,并向当 项目即将制定突发安全事故应急预案,并 向当地安全生产监管部门报备 项目将定期对员工进行安全和职业卫生教育 项目将定期对员工进行安全和职业卫生教育			符
地安全生产监管部门报备			合
(六)企业定期对员工进行安全和职业卫生教育			
大、人员素质 生产、废水处理等岗位员工经专业技能培训,获得			
生产、废水处理等岗位员工经专业技能培训,获得 行业培训机构颁发的合格证书。特殊岗位操作人员 取得相关工种职业技能鉴定等级证书,持证上岗。 企业有中级及以上职称的技术管理人员 制关工种职业技能鉴定等级证书,持证上 岗。企业有中级及以上职称的技术管理人员	(八) 正业足别对贝工进行女主和奶业上工教育		
行业培训机构颁发的合格证书。特殊岗位操作人员 取得相关工种职业技能鉴定等级证书,持证上岗。 企业有中级及以上职称的技术管理人员 制关工种职业技能鉴定等级证书,持证上 岗。企业有中级及以上职称的技术管理人员		教育	
取得相关工种职业技能鉴定等级证书,持证上岗。 颁发的合格证书。特殊岗位操作人员取得 企业有中级及以上职称的技术管理人员 相关工种职业技能鉴定等级证书,持证上 岗。企业有中级及以上职称的技术管理人	六、人员素质	教育	
企业有中级及以上职称的技术管理人员 相关工种职业技能鉴定等级证书,持证上 岗。企业有中级及以上职称的技术管理人	生产、废水处理等岗位员工经专业技能培训,获得	项目将严格执行"生产、废水处理等岗位	
岗。企业有中级及以上职称的技术管理人	生产、废水处理等岗位员工经专业技能培训,获得行业培训机构颁发的合格证书。特殊岗位操作人员	项目将严格执行"生产、废水处理等岗位 员工经专业技能培训,获得行业培训机构	
	生产、废水处理等岗位员工经专业技能培训,获得 行业培训机构颁发的合格证书。特殊岗位操作人员 取得相关工种职业技能鉴定等级证书,持证上岗。	项目将严格执行"生产、废水处理等岗位 员工经专业技能培训,获得行业培训机构 颁发的合格证书。特殊岗位操作人员取得	
	生产、废水处理等岗位员工经专业技能培训,获得 行业培训机构颁发的合格证书。特殊岗位操作人员 取得相关工种职业技能鉴定等级证书,持证上岗。	项目将严格执行"生产、废水处理等岗位 员工经专业技能培训,获得行业培训机构 颁发的合格证书。特殊岗位操作人员取得 相关工种职业技能鉴定等级证书,持证上	

定的通知》(中环规字[2017]3号)的相符性

准入要求:①主城区(东区、西区、南区、石岐区)、一类环境空气质量功能区(五桂山生态保护区片区和南朗镇孙中山故居片区)内不再审批(或备案)新建、扩建涉 VOCs 产排的工业类项目。②各企事业单位应使用低(无) VOCs 含量的非有机溶剂型涂料、油墨、胶粘剂等原辅材料,全面替代溶剂型原辅材料,重点推广水性涂料、粉末涂料、高固体分涂料、无溶剂涂料、辐射固化涂料(UV涂料)、大豆油墨、水性胶粘剂等绿色产品。③涂料、油墨、胶粘剂相关生产企业的低(无) VOCs 涂料、油墨、胶粘剂产品比例应分别达到 60%、70%、85%以上。

项目位于中山市三角镇高平化工区,属于二类环境空气质量功能区,不属于主城区及一类环境空气质量功能区,不属于高 VOCs 产排项目。

(6) 与《关于加强涉重金属行业污染防控的意见》的相符性分析

根据《关于加强涉重金属行业污染防控的意见》的相关要求。

一、总体要求

(三)工作重点。重点行业包括重有色金属矿(含伴生矿)、采选业(铜、铅锌、镍钴、锡、锦和汞矿采选业等)、重有色金属冶炼业(铜、铅锌、镍钴、锡、锦和汞冶炼等)、铅蓄电池制造业、皮革及其制品业(皮革揉制加工等)、化学原料及化学制品制造业(电石法聚氯乙烯行业、铬盐行业等)、电镀行业。重点重金属污染物包括铅、汞、镉、铬和类金属砷。进一步聚焦铅锌矿采选、铜矿采选以及铅锌冶炼、铜冶炼等涉铅、涉镉行业;进一步聚焦铅、镉减排,在各重点重金属污染物排放量下降前提下,原则上优先削减铅、镉;进一步聚焦群众反映强烈的重金属污染区域。

本项目属于电镀行业,电镀生产过程中需要配套电镀铜、锡、镍、银、金、铬等,但是企业生产废水不直接外排,全部经专置污水管网排入三角镇高平污水处理有限公司进行处理,故本项目的建设与《关于加强涉重金属行业污染防控的意见》的相关要求不相违背。

(7) 与《中山市人民政府关于印发中山市"三线一单"生态环境分区管控方案 (2023年版)的通知》(中府[2023]57号)相符性分析

(二)环境管控单元准入清单

根据三角高平化工区重点管控单元准入清单:

环境管控单元编码	环境管控单元名称	管控单元分类	要素细类
ZH44200020024	三角高平化工区重点	园区型重点管控单	①水环境一般管控区;②大
Z1144200020024	管控单元	元3	气环境高排放重点管控区、

区域布局管控: 1-1. 【产业/鼓励引导类】①鼓励五金加工(含电镀)、电子及线路板、高端纺织印染、化工、高端装备制造等产业。②鼓励发展与现有园区产业相协调,与现有印染、电镀和电子信息产业相配套的下游相关产业,完善和延伸化工区的产业链。优化产业结构,鼓励发展排污量少、环境风险小、产值高、技术含量高的工业项目,逐步淘汰传统的高耗能、高排污量、低产出的落后行业。

- 1-2. 【产业/限制类】根据电镀、化工、印染等产业具体的生产工艺和技术路线, 将企业的产值、税收与排污量挂钩,建立单位排污量经济贡献量化指标,制定最低入 园标准。
- 1-3. 【大气/限制类】原则上不再审批或备案新建、扩建涉使用非低(无) VOCs 涂料、油墨、胶粘剂原辅材料的工业类项目,相关豁免情形除外。
- 1-4. 【土壤/鼓励引导类】鼓励企业采用先进适用技术和生产工艺、替代原料,对涉重金属落后产能进行改造,促进重点污染物的减排。
- 1-5. 【土壤/综合类】严格重点行业企业准入管理,新、改、扩建重点行业建设项目应遵循重点重金属污染物排放"等量替代"原则。。

项目属于五金加工(含电镀)项目,项目位于三角高平化工区,不属于禁止建设项目,项目不属于使用非低(无)VOCs涂料、油墨、胶粘剂原辅材料的工业类项目;项目所在地不属于农用地优先保护区域,因此项目符合三角高平化工区重点管控单元准入清单中区域布局管控要求。

能源资源利用: 2-1. 【能源/限制类】①提高资源能源利用效率,推行清洁生产,对于国家已颁布清洁生产标准及清洁生产评价指标体系的行业,新建、改建、扩建项目均要达到行业清洁生产先进水平。②集中供热区域内达到供热条件的企业不再建设分散供热锅炉。③新建锅炉、炉窑只允许使用天然气、液化石油气、电及其它可再生能源。2-2. 【水/限制类】电镀行业中水回用率力争达到 60%以上。鼓励印染行业生产用水重复利用率应达到 40%以上。

项目属于五金加工(含电镀)项目,项目能源主要为电能及天然气,属于清洁能源,项目符合三角高平化工区重点管控单元准入清单中能源资源利用要求。

污染物排放管控: 3-1. 【水、气/限制类】严格污染物总量控制,实行污染物削减替代。建设项目须明确重金属污染物排放总量来源。3-2. 【水/限制类】工业园区内生

产废水和生活污水排放量不得超过 12.76 万吨/日(4657 万吨/年),化学需氧量排放量不得超过 12.36 吨/日(4510 吨/年),氨氮排放量不得超过 0.124 吨/日(37.2 吨/年)。3-3. 【大气/限制类】①工业园区内的二氧化硫排放量不得超过 3156 吨/年,二氧化氮排放量不得超过 3185 吨/年。②涉新增挥发性有机物排放的项目实行两倍削减替代。

项目生活污水经三级化粪池处理后通过排污管网汇入中山市三角镇生活污水处理厂进行集中处理后达标排放。项目生产废水分别经专置污水管网排入中山市三角镇高平污水处理有限公司进行处理,尾水水质达广东省《电镀水污染物排放标准》

(DB44/1597-2015)表 1 中珠三角排放限值后,其中 60%作为回用水经中水回用系统 处理后由专用管道返回给金美达公司作为生产用水使用,另外 40%的尾水经高平污水 处理有限公司排污口最终排入洪奇沥水道。项目不增加废水总量。

环境风险防控: 4-1. 【水/综合类】①集中污水处理厂应采取有效措施,防止事故废水直接排入水体,完善污水处理厂在线监控系统联网,实现污水处理厂的实时、动态监管。②单元内涉及省生态环境厅发布《突发环境事件应急预案备案行业名录(指导性意见)》所属行业类型的企业,应按要求编制突发环境事件应急预案,需设计、建设有效防止泄漏化学物质、消防废水、污染雨水等扩散至外环境的拦截、收集设施,相关设施须符合防渗、防漏要求。4-2. 【土壤/综合类】①加强区域土壤污染的环境风险管控,加强土壤污染排查、治理和修复工作。②园区内企业要落实《工矿用地土壤环境管理办法(试行)》要求,在项目环评、设计建设、拆除设施、终止经营等环节落实好土壤和地下水污染防治工作。4-3. 【固废/综合类】强化危险废物处置单位的环境风险源监控,提升危险废物监管能力,利用信息化手段,推动全过程跟踪管理。4-4. 【风险/综合类】建立企业、园区、生态环境部门三级环境风险防控联动体系,建立事故应急体系,落实有效的事故风险防范和应急措施,成立应急组织机构,加强环境应急管理,定期开展应急演练,提高区域环境风险防范能力。

项目拟设有效防止泄漏消防废水、污染雨水等扩散至外环境的拦截、收集设施,相关设施须符合防渗、防漏要求。

综上所述,项目符合《中山市人民政府关于印发中山市"三线一单"生态环境分区管控方案(2023 年版)的通知》(中府[2023]57 号)中的要求。

1.4.2 选址规划的相符性分析

(1) 与《中山市三角片区热电冷联产规划》相符性

根据《中山市三角片区热电冷联产规划》,三角镇全镇供热规划范围分为高平工业区、金鲤工业区以及由旧镇区和新城区组成的中心镇区,项目位于高平工业区,该规划提出,中山市三角片区集中热源为广东粤电中山天然气热电冷联供项目。

- ①高平工业区供热介质及供热负荷: 近期2015年最大用热(冷)负荷990.07t/h,远期2020年1829.55t/h。
- ②热力网形式:区域集中供热热网主干管采用双管形式,并随热负荷的发展分期建设。集中供热热网的各分支管均可与两条主干管相连,以最大限度保证供汽的可靠性。同时根据热电厂的位置,负荷分布情况,综合考虑管网投资、运行、管理因素,采用枝状管网布置型式。

③热网方案如下

表 1.4-2 高平工业区热网方案

序号	项目	走向	管径选择
1	高平供热 管线一线	主干线由三角镇热电联产项目厂址沿高平大道西,于高平大道西与河涌交接段分叉出两条支线。其中本支线沿河涌南下,供沿途用热企业,至南下实业有限公司,管线总长约4Km	DN700 (双管)
2	高平供热 管线二线	主干线由三角镇热电联产项目厂址沿高平大道西,于高平大道西与河涌交接段分叉出两条支线。其中本支线沿高平大道西至旧河堤,最后沿京珠高速南下供沿途用热企业,至荣茂蜡业有限公司,管线总长约6.3Km	DN900 (双管)
3	高平供热 管线三线	本支线于高平供热管线二线旧河堤段分出,供高平工业区电镀用热 企业,最后至中山市兴天电镀有限公司,管线总长约1.2Km	DN600 (单管)

项目位于高平工业区,位于广东粤电中山天然气热电冷联供项目供热范围内。

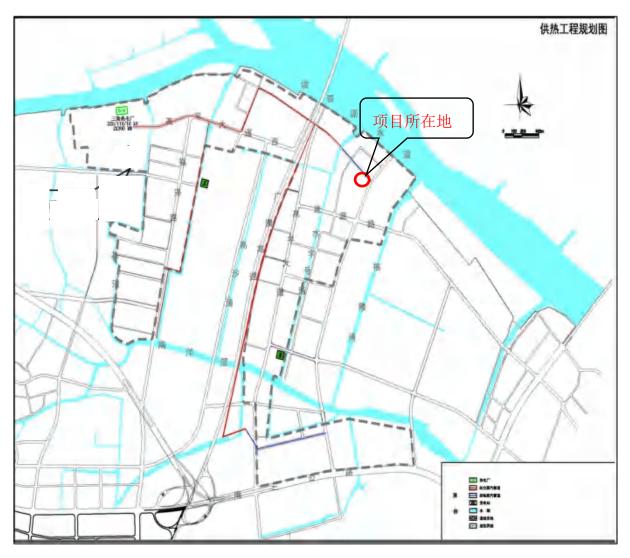


图 1.4-1 高平工业区供热工程规划图

(2) 与中山市三角镇高平工业区相符性分析

①用地相符性

项目位于高平工业区的五金加工区,与三角镇高平工业区用地相符。

中山市三角镇土地利用规划图如下图:

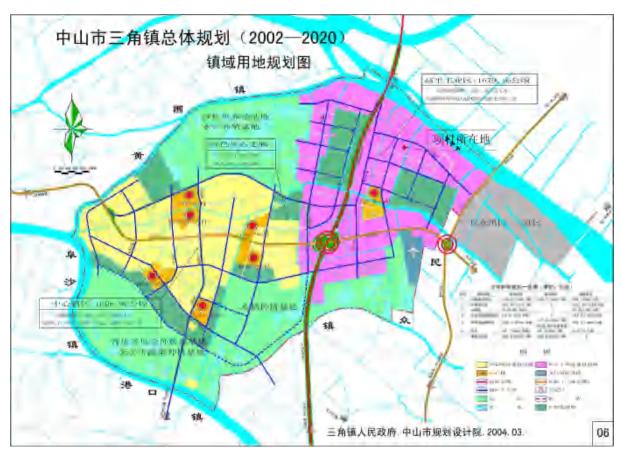


图 1.4-1 中山市三角镇总体规划图 (2002-2020)

图 1.4-2 项目在中山三角高平化工区的位置示意图

②总量控制

根据审查意见及《中山高平工业区扩建环境影响报告书》(中山大学环境科学研究所,中山市环境科学研究所,2001年7月),中山高平工业区内主要污染物的排放总量控制指标如下表所示:

表 1.4-3 高平工业区内主要污染物的排放总量控制指标

	65日	排放量		
序号	项目	t/d	t/a	
1	工业废水和生活污水	12.76万	4657万	
2	CODcr	12.36	4511.4	
3	BOD ₅	2.222	811	
4	—————————————————————————————————————	0.156	56.9	
5	硫化物	0.065	23.7	
6	氰化物(CN·)	0.0207	7.6	
7	Cu	0.0121	4.417	
8	六价铬	0.009	3.285	
9	Ni	0.0221	8.067	
10	Zn	0.0288	10.512	
11	石油类	0.052	19.0	
12	悬浮物	1.883	687.3	
13	SO_2	3156t/a	/	
14	NO_2	3185t/a	/	
15	烟尘	945t/a	/	

③中山市高平污水处理有限公司废水处理规模

本项目生产废水经收集后排入工业区废水管网,经中山市高平污水处理有限公司处理达标后排放,根据《中山市三角镇高平污水处理有限公司第四期技改项目环境影响报告书》及其批复文件,高平污水处理有限公司废水处理规模为11000吨/天,初始审批电镀废水排放量为10808.18t/d,其通过电镀废水排放企业电镀废水排放减排15%,根据数据统计,中山市三角镇高平污水处理有限公司已审批废水排放量为9239.38t/d,中山市三角镇高平污水处理有限公司电镀废水处理剩余规模为1760.62t/d,因此本项目生产废水可排入中山市高平污水处理有限公司处理。

表 1.4-4 削减前后各企业电镀废水排放量表

序号	企业名称	原始生产废水排放量		截止 2020 年 1 月已 水排放量	备注	
7		批复	水量 t/d	批复	水量 t/d	
1	中山市皇鼎逸俊 电镀有限公司	中环建表 (2009) 0556 号	555.46	中环建表(2009) 0556 号	554.46	
2	中山市启诚电镀 有限公司(原兴天 电镀)	中环建表 (2004) 66 号	410	中环建表(2004) 66 号	410	
3	铃木东新电子(中 山)有限公司	中环建表 (2007) 0288 号	41	中环建表(2007) 0288 号	41	
4	富山精密电镀(中	中环建表批字	250	中环建书 (2013)	212.5	

	山)有限公司	(2002) 308 号		0079 号		
5	中山龙大兴电镀	中环建表批字	100	中环建书 (2017)	85	
	有限公司	(2002) 079 号	100	0003 号	83	
6	中山市科裕电镀	中环建表批字	300	中环建书(2018)	255	
	有限公司	(2002) 078 号		0011 号		
7	中山市朝阳五金	中环建表(2006)	1000	中环建书 (2013)	0.50	
7	制品表面处理有 限公司	1号	1000	0077 号	850	
	中山市中环电镀	中环建表(2004)		中环建书(2018)		
8	处理有限公司	52号	767	0023 号	652	
	中山市三美高新	·				
9	材料技术有限公	中环建表(2005)	580	中环建书(2018)	418	
	司	141 号		0025 号		
	中山市金美达金	中环建表(2002)		中环建书		
10	属表面处理有限	95号	280	(2013) 0105 号	237.5	
	公司	75 7		(2013) 0103 5		
	中山市金舵金属	中环建表批字	25.5	中环建书(2013)	1055	
11	制品电镀有限公	(2002) 069 号	230	0097 号	195.5	
	司由小夫沙姆中盟	山兀神丰州 ⇔		中环建书 (2019)		
12	中山市永耀电器 电镀有限公司	中环建表批字 (2002) 076 号	270	0043 号	229.5	
	中山市兆鹰五金	中环建表		中环建书 (2020)		
13	电镀有限公司	(2007) 1132 号	200	0001号	169	
	中山鸿城电镀有	中环建(2003)	250	中环建书 (2013)	221.2	
14	限公司	51号	378	0094 号	321.3	
15	中山市旺铁表面	中环建表批字	380	中环建书(2013)	323	
13	处理有限公司	(2002) 070 号	360	0099 号	323	
16	中山市红棉电镀	中环建(2003)	200	中环建书(2013)	169.5	
	有限公司	45 号		0009 号	10,10	
1.7	中山市创艺金属	中环建 (2003)	200	中环建书 (2019)	160.04	
17	表面处理有限公 司	99 号	200	0009 号	168.84	
	中山凯泰金属表	中环建 (2003)		中环建书 (2013)		
18	面处理有限公司	87号	246	0085 号	209	
	中山宝兴汽车零					
19	部件制造有限公	中环建表 (2006)	500	中(角)环建表	500	
	司	1171 号		(2015)0018 号		
20	中山市盛兴电镀	中环建(2002)	40	中环建书(2013)	34	
20	有限公司	92 号	.	0074 号	JT	
21	中山市锦成电镀	中环建表审字	200	中环建书(2019)	152.65	
	有限公司	(2003) 27 号		0014 号		
22	中山市华航五金	中环建表批字	439.64	中环建书(2013)	408.19	
	电镀有限公司 中山市高晖五金	[2002]071 号 中环建(2003)		0125 号 中环建书(2019)		
23	中山市高畔五宝 电镀有限公司	64 号	590	0045 号	299.76	
	中山市华锋电镀	中环建表批字		中环建书(2019)		
24	有限公司	(2002) 075 号	450	0018 号	382.5	
25	中山市源发电镀	中环建表批字	400	中环建书(2013)	240	
25		(2002) 073 号	400	0082 号	340	
	•			•		

	合计		10808.18	实际审批排放量	9239.38	具体见 备注
				削减后审批排放量	9164.38	
32	中山市大雅三兴 厨房电器配件有 限公司	中环建表 [2017]0074 号	98.18	中环建表 [2017]0074 号	98.18	新建
31	中山市隆创金属 表面处理有限公 司	/	/	中环建书(2018) 0026 号	148.5	新建,具 体见备 注
30	中山市鸿田电镀 有限公司(原古河 精密(中山)有限 公司)	(2013)0078 号	232.9	中环建书(2013) 0078 号	232.9	
29	中山市伟文五金 电镀有限公司	中环建表批字 (2002) 082 号	300	中环建表批字 (2002)082 号	255	
28	隆得表面涂镀(中 山)有限公司	中环建表批字 (2002) 072 号	150	中环建书(2013) 0080 号	127.5	
27	中山市大合力五 金电镀有限公司	中环建表 (20007)1133 号	600	中环建书(2016) 0015 号	504.1	
26	中山市兴泰五金 电镀有限公司	中环建表批字 (2002)074 号	420	中环建书(2013) 0107 号	255	

注:中山市隆创金属表面处理有限公司总量中的75t/d来源于中山市三美高新材料技术有限公司,另外75t/d来源于中山高平化工区电镀片区中划拨。

1.4.3 项目布局的合理性分析

建设项目用地布局已经确定,生产废水分类收集排放到中山市三角镇高平污水处理 有限公司,处理达标后排入洪奇沥水道,生活污水排放到三角镇生活污水处理厂处理达 标后排入洪奇沥水道。用地布局比较紧凑,可节约土地。根据大气环境与噪声影响预测, 建设项目对临近敏感点影响不大。项目废水经处理达标排放,对周边水环境影响不大。

1.5环境影响报告书的主要结论

中山市金美达金属表面处理有限公司电镀生产线技改扩建项目位于中山市三角镇高平化工区,符合国家、省、市相关的环保法律法规、政策、规划要求,符合中山市城市总体规划、三角镇总体规划、高平化工区规划要求。项目不占用基本农田保护区、自然保护区、饮用水水源保护区等用地,选址合理。建设项目应严格执行"三同时"规定,落实本报告书中所提出的环保措施,同时确保环保处理设施正常运行,并加强清洁生产管理,杜绝污染事故,做好环境风险事故的防范,从环境保护的角度来看,该项目的建设是可行的。

2 总则

2.1编制依据

2.1.1 法律依据

- (1) 《中华人民共和国环境保护法》(2015年1月1日);
- (2)《中华人民共和国环境影响评价法》(2018年12月29日修订);
- (3)《中华人民共和国水污染防治法》(2018年1月1日);
- (4) 《中华人民共和国大气污染防治法》(2018年10月26日修订);
- (5)《中华人民共和国固体废物污染环境防治法》(2016年11月7日修正版);
- (6)《中华人民共和国环境噪声污染防治法》(2018年12月29修订);
- (7) 《中华人民共和国土壤污染防治法》(2019年1月1日施行);
- (8) 《中华人民共和国土地管理法》(2004年8月28日);
- (9) 《中华人民共和国水法(修订)》(2016年9月);
- (10)《中华人民共和国水土保持法》(2011年3月1日);
- (11)《中华人民共和国清洁生产促进法》(2012年7月1日);
- (12)《中华人民共和国节约能源法(修订)》(2016年9月1日);
- (13)《中华人民共和国城乡规划法》(2008年1月1日);
- (14) 《中华人民共和国循环经济促进法》(2008年10月1日);
- (15)《中华人民共和国可再生能源法》(2010年4月1日)。

2.1.2 全国性环境保护行政法规和法规性文件

- (1)《国务院关于落实科学发展观加强环境保护的决定》(国发〔2005〕39号, 2005年12月3日);
- (2) 《国务院关于加强环境保护重点工作的意见》(国发〔2011〕35 号,2011 年 10 月 17 日):
 - (3)《建设项目环境影响评价分类管理名录》(2018年4月28日):
 - (4) 《危险化学品安全管理条例》(2013年12月17日);

- (5)《国家危险废物名录》(环境保护部39号令,2016年8月1日):
- (6)《危险废物转移联单管理办法》(国家环境保护总局令第5号,1999年10月1日);
 - (7) 《危险废物污染防治技术政策》(环发[2001]199号,2001年12月17日);
- (8)《危险化学品目录(2015版)》(国家安全生产监督管理总局中华人民共和国工业和信息化部、中华人民共和国公安部中华人民共和国环境保护部、中华人民共和国交通运输部中华人民共和国农业部、中华人民共和国国家卫生和计划生育委员会、中华人民共和国国家质量监督检验检疫总局、国家铁路局中国民用航空局公告,2015年第5号);
- (9) 《关于印发<企业突发环境事件风险评估指南(试行)>的通知》(环办〔2014〕 34号,2014年4月3日);
 - (10) 《水污染防治行动计划》, 2015年4月16日;
- (11)《关于进一步加强环境影响评价管理防范环境风险的通知》(环发〔2012〕 77号):
- (12)《关于加强国家重点生态功能区环境保护和管理的意见》,环发[2013]16号, 2013年1月22日:
- (13)《关于核定建设项目主要污染物排放总量控制指标有关问题的通知》(环办[2003]25号,2003年3月25日);
 - (14) 《关于加强重金属污染防治工作的指导意见的通知》, 国发办[2009]61号;
- (15) 《关于发布<建设项目危险废物环境影响评价指南>的公告》(环境保护部公告 2017 年第 43 号, 2017 年 10 月 1 日);
 - (16)《建设项目环境影响评价政府信息公开指南(试行)》(2014年1月1日);
 - (17) 《环境保护综合名录》(2017年版);
- (18)《建设项目主要污染物排放总量指标审核及管理暂行办法》(环发〔2014〕 197号):
- (19) 《国务院关于印发"十三五"生态环境保护规划的通知》(国发〔2016〕65号, 2016年11月24日);
- (20)《国务院关于印发大气污染防治行动计划的通知》(国发〔2013〕37号,2013年9月10日);

- (21) 《国务院关于印发土壤污染防治行动计划的通知》(国发(2016)31号,2016年5月28日);
- (22)《国务院关于印发水污染防治行动计划的通知》(国发〔2015〕17号,2015年4月2日):
- (23) 关于《环境空气质量标准》(GB3095-2012)修改单的公告(生态环境部公告 2018年 29号);
- (24) 《关于印发〈全国生态保护"十三五"规划纲要〉的通知》(环境保护部文件, 环生态(2016) 151号, 2016年10月28日);
- (25)《产业结构调整指导目录(2019年本)》(中华人民共和国国家发展和改革委员会令第29号,2020年1月1日);
- (26) 《市场准入负面清单》(2019 年版)(发改体改[2019]1685 号, 2019 年 10 月 24 日);
- (27) 《产业发展与转移指导目录》(2018 年版)(中华人民共和国工业和信息化部 2018 年第 66 号 2018 年 12 月 20 日);
- (28) 关于印发《重点行业挥发性有机物综合治理方案》的通知(环大气[2019]53 号)。

2.1.3 地方性环境保护行政法规和法规性文件

- (1) 《广东省环境保护条例》(2018年11月29日修订);
- (2)《广东省珠江三角洲大气污染防治办法》(广东省人民政府令第 134 号, 2009 年 5 月 1 日);
 - (3)《广东省珠江三角洲清洁空气行动计划》(粤环发〔2010〕18号);
 - (4)《广东省饮用水源水质保护条例》(2018月11月29日修订);
 - (5)《广东省固体废物污染环境防治条例》(2019年3月1日实施);
- (6)《广东省实施<中华人民共和国环境噪声污染防治法>办法》(2010年7月23日第二次修订);
- (7) 《广东省清洁生产联合行动实施意见》(粤经贸资源[2001]972 号, 2001 年 12 月 13 日);
 - (8) 关于印发《广东省地表水环境功能区划》的通知(粤环[2011]14号, 2011年

2月14日);

- (9) 《广东省地下水功能区划》 (粤办函〔2009〕459号);
- (10)《广东省地下水保护和利用规划》(粤水资源函[2011]377号);
- (11) 《广东省环境保护厅关于印发南粤水更清行动计划(2017-2020)》粤环(2017) 28号,2017年5月31日);
- (12) 《广东省污染源排污口规范化设置导则》 (粤环[2008]42 号, 2008 年 4 月 28 日):
- (13)《广东省人民政府关于印发广东省建设项目环境影响评价文件分级审批办法的通知》(粤府〔2019〕6号,2019年1月19日);
 - (14) 《广东省用水定额》(GB44/T1461-2014);
- (15)《关于印发广东省地下水保护与利用规划的通知》(粤水资源函〔2011〕377号);
- (16)《广东省人民政府关于印发广东省水污染防治行动计划实施方案的通知》 (粤府〔2015〕131号 2015年 12月 31日);
- (17)《广东省环境保护厅关于印发2017年广东省土壤污染防治工作方案的通知》, (粤环〔2017〕55号);
- (18) 《关于进一步明确固体废物管理有关问题的通知》(粤环〔2008〕117号, 2008年12月8日):
 - (19) 《关于进一步加强建设项目环境保护管理的意见》, 粤环(2005) 11号;
- (20)中共广东省委办公厅、广东省人民政府办公厅《治污保洁工程实施方案》(粤办发〔2004〕8号):
- (21)《广东省环境保护厅关于印发广东省重金属污染综合防治"十三五"规划的通知》(粤环〔2017〕2号);
- (22)《关于珠江三角洲地区严格控制工业企业挥发性有机物(TVOCs)排放的意见》(粤环[2012]18号);
- (23) 广东省人民政府关于印发《广东省打赢蓝天保卫战实施方案(2018—2020年)》的通知(粤府(2018)128号);
- (24) 《关于同意调整中山市饮用水源保护区划方案的批复》(粤府函[2010]303 号, 2010年12月22日);

- (25)《广东省资源综合利用管理办法》(2003年9月24日,广东省人民政府令第83号);
- (26) 《广东省环境保护规划纲要(2006-2020年)》(粤府[2006]35号,2006年4月4日);
 - (27) 《珠江三角洲环境保护规划纲要(2004-2020年)》(2005年2月18日);
- (28) 《〈珠江三角洲环境保护规划纲要(2004-2020 年)〉实施方案》(粤环函 [2005]111 号, 2005 年 2 月 3 日);
 - (29) 《珠江三角洲地区改革发展规划纲要(2008-2020年)》;
- (30) 《珠江三角洲环境保护一体化规划(2009-2020年)》(粤府办[2010]42号, 2010年7月30日);
- (31)《广东省环境保护厅关于珠江三角洲地区执行国家排放标准水污染物特别排放限值的通知》(粤环〔2012〕83号):
- (32)《中山市人民政府办公室关于印发中山市生态功能区划的通知》(2005-2020) (中府办(2019) 10号);
- (33) 《中山市环境空气质量功能区保护规定(2016 修订)》(中府函[2016]236号):
- (34)中山市环境保护局关于印发《中山市声环境功能区划方案》的通知(中环〔2018〕87号);
 - (35) 《中山市水功能区区管理办法》(中府[2008]96号);
 - (36)《中山市水环境保护条例》(2019年4月3日实施);
- (37) 《中山市水环境功能区水质保护规定》(中府[1997]115 号, 1997 年 12 月 8 日);
 - (38) 《中山市内河涌管理规定》(中府[2002]) 52 号;
- (39)中山市环境保护局关于印发《关于加强挥发性有机物污染控制工作指导意见》 的通知(中环[2015]34号);
 - (40)《中山市建设工程文明施工管理办法》(中府[1996]82号);
 - (41) 《中山市污染物排放口规范化管理规定》(中府[2001]38号)
 - (42)《中山市市域环境卫生控制性规划》(1999年12月);
 - (43) 《关于加强治理有机废气的通知》(中府办[1998]39号);

- (44)《印发中山市突发事件应急预案管理办法的通知》(中山市人民政府办公室, 2011年11月18日);
- (45) 《中山市固定源挥发性有机物替代实施方案(2017-2020)(2017 年 6 月 12 日);
- (46)中山市环境保护局关于印发中山市涉挥发性有机物项目环保准入管理规定的通知(中环规字[2017]3号);
 - (47) 《中山市三角镇总体规划(2002-2020)》;
- (48)《中山市环境保护局中山市发展和改革局关于印发<中山市差别化环保准入促进区域协调发展实施细则>的通知》(中环[2015]109号);
 - (49) 《中山市环境保护规划(2011-2020)修编》(中府函[2015]730号);
 - (50) 《中山市城市总体规划(2010-2020年)》(中山市人民政府,2009年);
 - (51) 广东省地方标准《大气污染物排放限值》(DB44/27-2001);
 - (52) 天津市地方标准《工业企业挥发性有机物排放控制标准》(DB12/524-2014);
 - (53) 《关于加强涉重金属行业污染防控的意见》(环土壤[2018]22号)。

2.1.4 导则和技术规范

- (1) 《环境影响评价技术导则总纲》(HJ2.1-2016);
- (2) 《环境影响评价技术导则生态影响》(HJ19-2011);
- (3) 《环境影响评价技术导则声环境》(HJ2.4-2009);
- (4) 《建设项目环境评价风险评价技术导则》(HJ 169-2018);
- (5) 《环境影响评价技术导则大气环境》(HJ2.2-2018);
- (6) 《环境影响评价技术导则地下水环境》(HJ 610-2016);
- (7) 《环境影响评价技术导则地表水环境》(HJ 2.3-2018);
- (8) 《电镀污水治理工程技术规范》(HJ2002-2010);
- (9) 《水污染治理工程技术导则》(HJ 2015-2012);
- (10) 《大气污染治理工程技术导则》(HJ 2000-2010);
- (11) 《环境噪声与振动控制工程技术导则》(HJ2034-2013);
- (12) 《吸附法工业有机废气治理工程技术规范》(HJ 2026-2013);
- (13) 《挥发性有机物污染防治技术政策》(环保部公告 2013 年第 31 号);

- (14) 《危险化学品重大危险源辨识》(GB18218-2018);
- (15) 《制定地方大气污染物排放标准的技术原则和方法》(GB/T13201-91);
- (16) 《电镀污水治理工程技术规范》(HJ2002-2010);
- (17)《电镀行业清洁生产评价指标体系》(发改委、环保部、工信部公告 2015 年第 25 号)。

2.1.5 其他有关依据

- (1) 《中山市三角镇高平污水处理有限公司第四期技改项目环境影响报告书》(中山市环境保护科学研究院,2013年12月);
 - (2) 中山市金美达金属表面处理有限公司提供资料:
 - (3) 中山市金美达金属表面处理有限公司搬迁技改扩建项目委托书。

2.2环境功能区划与评价标准

2.2.1 地表水环境功能区划

项目技改扩建后选址位于中山市三角镇高平化工区,属于高平工业区电镀片区。项目附近的主要地表水体有东北面约 388m 处的洪奇沥水道、东南面约 460m 处的福龙涌、西面约 305m 处的水字号涌,约 2330m 的黄沙沥水道。项目最终纳污水体为洪奇沥水道。根据《广东省地表水环境功能区划》(2011年1月)及《中山市水功能区管理办法》(中府(2008)96号),洪奇沥水道为工、农业用水,水质保护目标为III类水,执行《地表水环境质量标准》(GB3838-2002)III类标准。黄沙沥水道水质目标为III类水,水字号涌水质目标为IV类水,福龙涌水质目标为 V 类水,分别执行《地表水环境质量标准》(GB3838-2002)III类、IV类、V 类标准。

项目选址位于中山市三角镇高平化工区,根据《中山市饮用水源保护区调整方案》(2010),项目不在饮用水源保护区范围内。本项目水环境功能区划和饮用水源保护区范围详见错误!未找到引用源。及图 2.2-1。

 表 2.2-1 项目周边地表水功能区划一览表

 声号
 地表水体
 水功能区划类别
 是否饮

序号	地表水体	水功能区划类别	是否饮用水源保护区
1	洪奇沥水道	地表水Ⅲ类	否

2	福龙涌	地表水V类	否
3	水字号涌	地表水IV类	否
4	黄沙沥水道	地表水III类	否

2.2.2 地下水环境功能区划

根据《关于印发广东省地下水功能区划的通知》(粤水资源[2009]19 号),项目所在地属于珠江三角洲中山不宜开采区(代码 H074420003U01),水质目标为 V 类,详情见错误!未找到引用源。和图 2.2- 2

L.L. AT	地下水	地下水二级功能区		77° -L. I.		ыт		77.h /1.
世级 行政 区	地级 行政 一级功	名称	代码	所在水 资源二 级分区	地貌类型	地下 水类 型	面积 (km²)	矿化 度 (g/L)
中山	保留区	珠江三角洲 中山不宜开 采区	H074420003U 01	珠江三角洲	一般 平原 区	孔隙 水	1209.2	1->10

表 2.2-2 项目所在地地下水功能区划一览表

表 2.2-3 项	[目所在地地]	下水功能[区划一览表
-----------	---------	-------	-------

现状 水质 类别	年均总补给 量模数(万 m³/a.km²)	年均可开 采量模数 (万 m³/a.km²)	现状年实际 开采量模数 (万 m³/a.km²)	地下水功 水质类 别	能区保护目 标 水位	备注
V				V	维持现状	矿化度、Fe、 NH ₄ ⁺ 超标

2.2.3 环境空气功能区划

根据《中山市人民政府关于<中山市环境空气质量功能区划(2016 年修订版)>的批复》(中府函[2016]236 号),三角镇镇域全境划分为二类环境空气质量功能区,空气环境质量执行《环境空气质量标准》(GB 3095-2012)二级标准。详情见图 2.2-3。

2.2.4 声环境功能区划

根据《中山市声环境功能区划方案》(2018年2月),项目所在地属于2类标准适用区域,执行《声环境质量标准》(GB3096-2008)中的2类标准。详情见图 2.2-4。

2.2.5 生态环境功能区划

查阅《广东省环境保护规划纲要》(2006-2020年)可知,项目所在中山市属于珠三

角洲平原农业-都市经济生态区(E4),陆域用地功能位于有限开发区内,不位于重点生态环境保护区域范围内,详细情况见图 2.4-5 及 2.4-6。

根据《中山市人民政府办公室关于印发<中山市生态功能区划>的通知》(中府办[2019]10号)可知,本项目所在区域属于"IV 北部平原生态区—43 北部平原人居保障功能生态亚区—4305三角镇人居保障生态功能区,详细情况见图 2.4-7~图 2.4-9 所示。

综合以上分析,项目选址区域生态环境功能区划符合现有规划限定要求。

2.2.6 环境功能属性汇总

评价区域所属环境功能区见下表。

表 2.2-4 建设项目区域环境功能属性

编号	项目	类别		
1	环境空气质量功能区	根据《中山市环境空气质量功能区划(2016修订版)》(中府函(2016) 236号印发),该项目所在地位于二类区域;执行《环境空气质量标 准》(GB3095-2012)修改单二级标准		
2	水环境功能区	根据《中山市水功能区管理办法》(中府〔2008〕96 号印发〕,洪奇 沥水道保护目标为III类水体,执行《地表水环境质量标准》 (GB3838-2002)III类标准		
3	声环境功能区	根据中山市环境保护局关于印发《中山市声环境功能区划方案》的通知(中环〔2018〕87号),本项目位于2类区域;执行《声环境质量标准》(GB3096-2008)中的2类标准		
4	地下水功能区划	根据《广东省地下水功能区划(2009)》(粤办函[2009]459 号印发), 该项目位于珠江三角洲中山不宜开发区,现状水质为 V 类;水位保护 目标为维持现状		
5	是否基本农田保护区	否		
6	是否风景保护区	否		
7	是否水库库区	否		
8	是否污水处理厂集水 范围	是,生活污水排入三角镇生活污水处理厂处理;生产废水排入高平污水处理有限公司处理		
9	是否管道燃气管网区	是		
10	是否属于环境敏感区	否		
11	项目用地属性	工业用地		

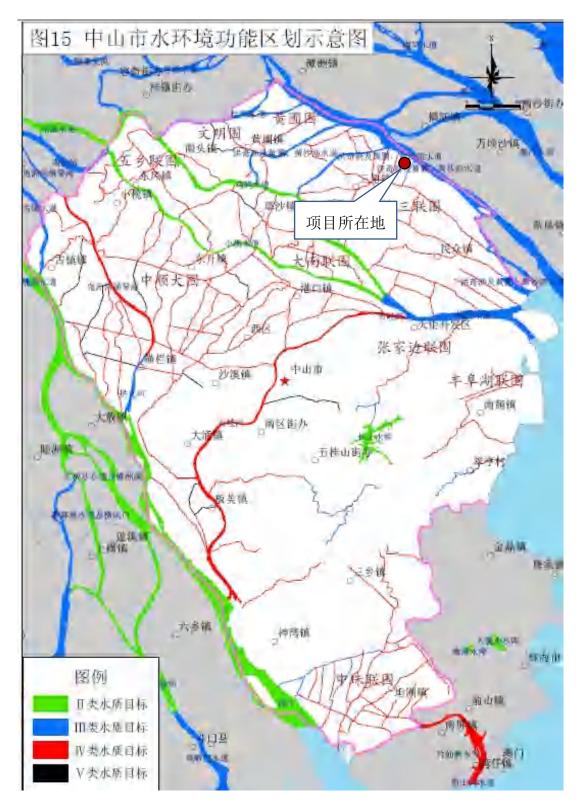


图 2.2-1 项目所在区域水环境功能区划



图 2.2-2 项目所在区域地下水环境功能区划图

中山市环境空气质量功能区划图

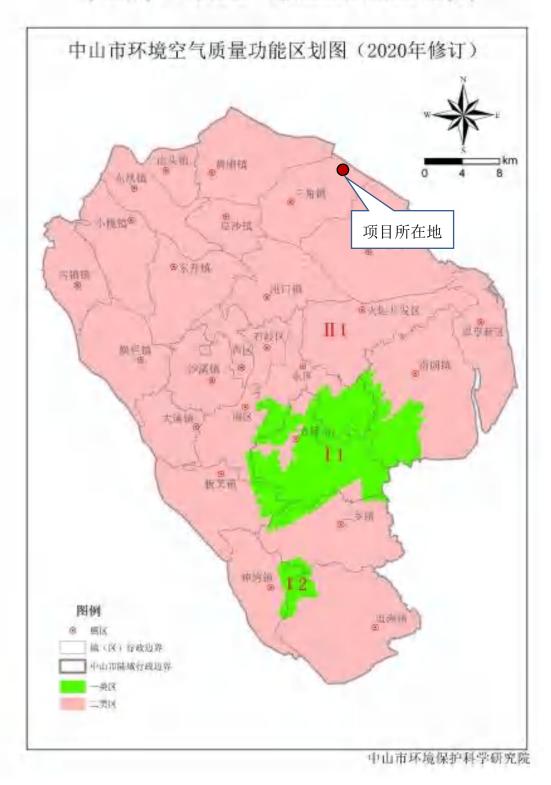


图 2.2-3 项目在中山市大气功能区划图中的位置

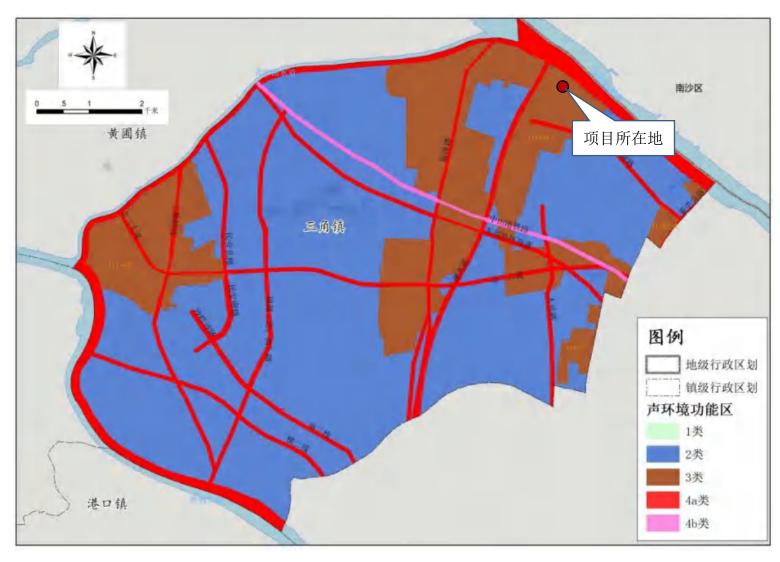


图 2.2-4 项目在中山市三角镇声功能区划图中位置

图 2.2-5 广东省生态功能区划图

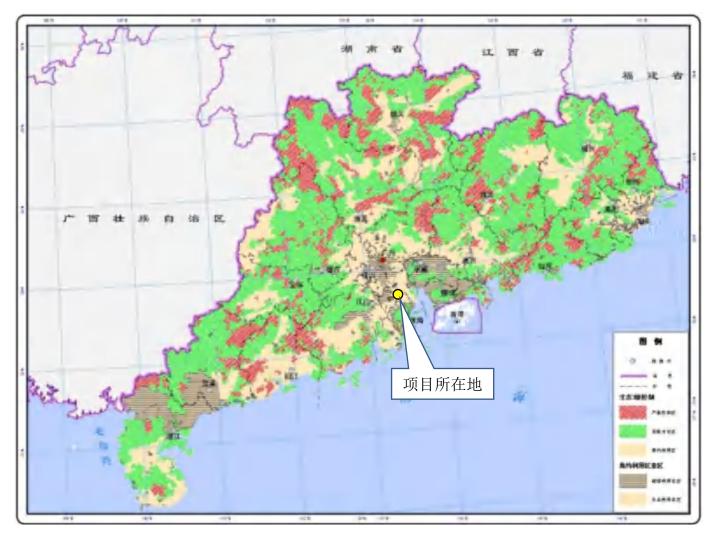
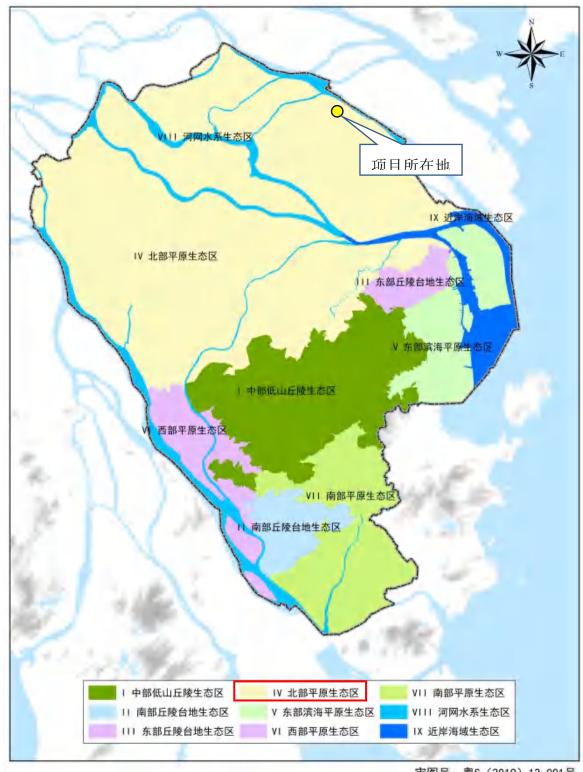
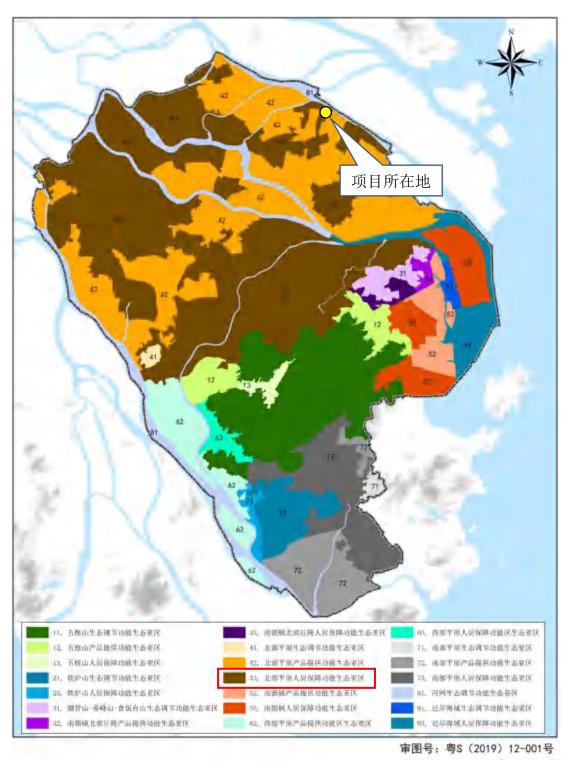
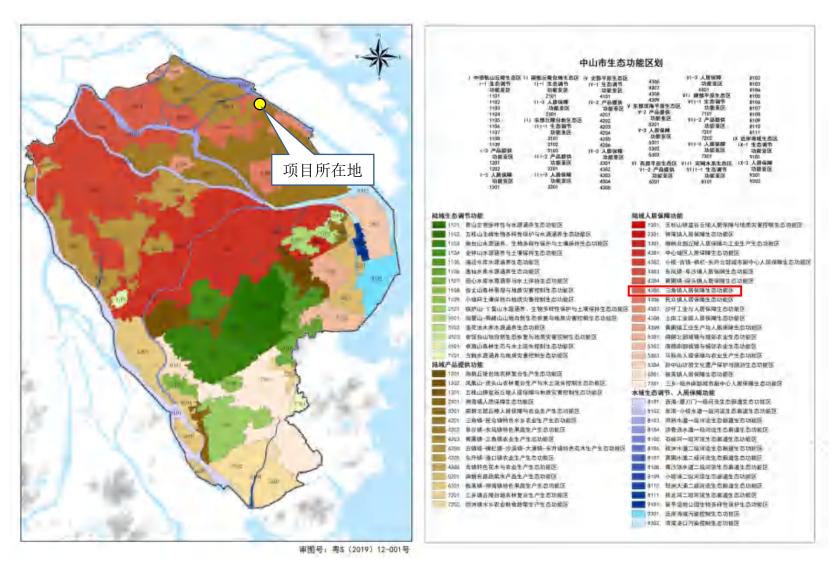
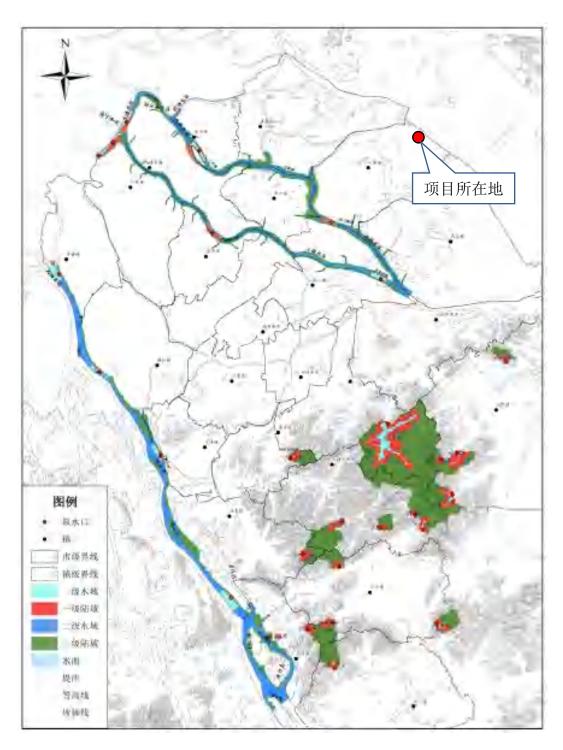




图 2.2-6 广东省陆域生态分级控制图



审图号: 粤S(2019)12-001号


图 2.2-7 广东省陆域生态分级控制图

2.2-8 中山市生态功能区划二级区划方图

2.2-9 中山市生态功能区划三级区

2.2-10 中山市饮用水源保护区范围图

2.2.7 环境质量标准

(1)根据《中山市水功能区管理办法》(中府[2008]96 号印发),高平污水处理有限公司外排废水纳污河道洪奇沥水道属于III类水环境功能区,执行《地表水环境质量标准》(GB3838-2002)III类水质标准;三角镇生活污水处理厂外排废水纳污河道洪奇沥水道属于III类水环境功能区,执行《地表水环境质量标准》(GB3838-2002)III类水质标准。

表 2.2-5 地表水环境质量标准基本项目标准限值单位: mg/L

级别		Ⅲ类			
水温(℃)		人为造成的环境水温变化应限制在:周平均最大温升≤1;周平均最大温降≤2			
pH 值(无量纲)		6~9			
溶解氧	1\	5			
高锰酸盐指数	>	6			
CODc _r	<u> </u>	20			
BOD ₅	<	4			
NH ₃ -N	<	1.0			
铜	\leq	1.0			
镍	<	0.02			
锌	>	1.0			
汞	>	0.0001			
镉	<u> </u>	0.005			
六价铬	>	0.05			
铅	>	0.05			
挥发酚	<u> </u>	0.005			
石油类	<u> </u>	0.05			
LAS	<u> </u>	0.2			
氰化物	<u> </u>	0.2			

(2) 根据《中山市环境空气质量功能区保护规定》,该区域属于空气质量二类功能区,SO₂、NO₂、PM₁₀、TSP 执行《环境空气质量标准》(GB3095-2012)中的二级标准; TVOC、氯化氢、硫酸雾、氨参考《环境影响评价技术导则 大气环境》(HJ2.2-2018)表 D.1 其他污染物空气质量浓度参考限值; 铬酸雾参考《工业企业设计卫生标准》(TJ36-79)中居住区容许浓度; 臭气浓度参照《恶臭污染物排放标准》(GB14544-93); 氰

化氢参考前苏联(1974)居住区大气中有害物质的最大允许浓度。详细标准值见下表。

项目	取值时间	浓度限值	执行标准			
	年平均	60ug/m ³				
SO_2	24 小时平均	150ug/m ³				
	1 小时平均	500ug/m ³				
	年平均	40ug/m ³				
NO_2	24 小时平均	80ug/m ³				
	1 小时平均	200ug/m ³	《环境空气质量标准》(GB3095-2012)			
PM_{10}	年平均	70ug/m ³				
PM10	24 小时平均	150ug/m ³				
	年平均	200ug/m ³				
TSP	24 小时平均	300ug/m ³				
氯化氢	日平均	15 ug/m ³	《环检影响》从什个目间 十层环检》			
录(化圣(1h 平均	50ug/m ³	《环境影响评价技术导则 大气环境》(HJ2.2-2018)表 D.1 其他污染物空气质量浓度 考限值			
硫酸	日平均	100 ug/m ³				
1916日交	1h 平均	300 ug/m ³	为 PK IE.			
铬酸雾	一次浓度	0.0015 mg/m^3	《工业企业设计卫生标准》(TJ36-79)中居住			
11123	DAW/X	0.0013 mg/m	区容许浓度			
氰化氢	昼夜平均	0.01 mg/m^3	前苏联(1974) ,居住区最高容许浓度			
			《环境影响评价技术导则 大气环境》			
TVOC	8 小时平均	600 ug/m ³	(HJ2.2-2018)表 D.1 其他污染物空气质量浓度参			
			考限值			
非甲烷总烃	1h 平均	2000 ug/m ³	《大气污染物综合排放详解》中的标准取值			
			《环境影响评价技术导则 大气环境》			
氨	1h 平均	200 ug/m ³	(HJ2.2-2018)表 D.1 其他污染物空气质量浓度参			
			考限值			

表 2.2-6 环境空气质量评价标准

(3)根据中山市环境保护局关于印发《中山市声环境功能区划方案》的通知 (中环〔2018〕87号),项目所在地声环境属于2类区执行《声环境质量标准》 (GB3096-2008)中的2类标准;

表 2.2-7 声环境质量评价标准单位: dB(A)

类别	昼间	夜间
2 类	60	50

(4)根据《广东省地下水功能区划(2009)》(粤办函[2009]459号印发),该项目位于珠江三角洲不宜开发区,水质保护目标《地下水质量标准》(GB/T14848-2017)中V类标准。

表 2.2-8 地下水质量标准 (GB14848-2017) 单位: mg/L, pH 值除外

序号	项目	V类
1	рН	<5.5, >9
2	总硬度	>650
3	溶解性总固体	>2000
4	耗氧量	>10
5	挥发性酚类	>0.01
6	氨氮	>1.5
7	硝酸盐	>30
8	亚硝酸盐	>4.8
9	硫酸盐	>350
10	氰化物	>0.1
11	氯化物	>350
12	铜	>1.5
13	锌	>5.0
14	六价铬	>0.1
15	镍	>0.1
16	铅	>0.1
17	铁	>2.0
18	镉	>0.01
19	砷	>0.05
20	阴离子表面活性剂	>0.3

(5)项目评价区域的土壤执行《土壤环境质量标准建设用地土壤污染风险管控标准(试行)》(GB36600-2018)筛选值(第二类用地)。

表 2.2-9《土壤环境质量标准建设用地土壤污染风险管控标准(试行)》(GB36600-2018)

		筛炎	· 	管制值		
序号	污染物(mg/kg)	第一类用地	第二类用地	第一类用地	第二类用地	
1	砷	20	60	120	140	
2	镉	20	65	47	172	
3	铬 (六价)	3	5.7	30	78	
4	铜	2000	18000	8000	36000	
5	铅	400	800	800	2500	
6	汞	8	38	33	82	

7	镍	150	900	600	2000
8	四氯化碳	0.9	2.8	9	36
9	氯仿	0.3	0.9	5	10
10	氯甲烷	12	37	21	120
11	1,1-二氯乙烷	3	9	20	100
12	1,2-二氯乙烷	0.52	5	6	21
13	1,1-二氯乙烯	12	66	40	200
14	顺-1,2-二氯乙烯	66	596	200	2000
15	反-1,2-二氯乙烯	10	54	31	163
16	二氯甲烷	94	616	300	2000
17	1,2-二氯丙烷	1	5	5	47
18	1,1,1,2-四氯乙烷	2.6	10	26	100
19	1,1,2,2-四氯乙烷	1.6	6.8	14	50
20	四氯乙烯	11	53	34	183
21	1,1,1-三氯乙烷	701	840	840	840
22	1,1,2-三氯乙烷	0.6	2.8	5	15
23	三氯乙烯	0.7	2.8	7	20
24	1,2,3-三氯丙烷	0.05	0.5	0.5	5
25	氯乙烯	0.12	0.43	1.2	4.3
26	苯	1	4	10	40
27	氯苯	68	270	200	1000
28	1,2-二氯苯	560	560	560	560
29	1,4-二氯苯	5.6	20	56	200
30	乙苯	7.2	28	72	280
31	苯乙烯	1290	1290	1290	1290
32	甲苯	1200	1200	1200	1200
33	间二甲苯+对二甲苯	163	570	500	570
34	邻二甲苯	222	640	640	640
35	硝基苯	34	76	190	760
36	苯胺	92	260	211	663
37	2-氯酚	250	2256	500	4500
38	苯并[a]蒽	5.5	15	55	151
39	苯并[a]芘	0.55	1.5	5.5	15
40	苯并[b]荧蒽	5.5	15	55	151

41	苯并[k]荧蒽	55	151	550	1500
42	崫	490	1293	4900	12900
43	二苯并[a, h]蒽	0.55	1.5	5.5	15
44	茚并[1,2,3-cd]芘	5.5	15	55	151
45	萘	25	70	255	700

2.2.8 排放标准

1、水污染物排放标准

(1)生活污水排放标准:生活污水经三级化粪池预处理达广东省地方标准《水污染物排放限值》(DB/26-2001)第二时段三级标准后,纳入三角镇生活污水处理厂处理,尾水水质达广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段一级标准与《城镇污水处理厂污染物排放标准》(GB18918-2002)一级 A 标准较严者后排入洪奇沥水道。

生活 动植 执行标准 COD_{Cr} BOD₅ NH₃-N LAS 总 P SS рН 污水 物油 广东省地方标准《水污 厂区 染物排放限值》 500 300 / 20 / 400 6-9 100 外排 (DB44/26-2001) 第二 时段三级标准 广东省地方标准《水污 染物排放限值》 三角 镇生 (DB44/26-2001)第二 活污 时段一级标准与《城镇 10 5 0.5 6-9 40 0.5 10 1 污水处理厂污染物排 水处 理厂 放标准》 外排 (GB18918-2002)一级 A 标准较严者

表 2.2-10 生活污水污染物排放浓度单位: mg/L, pH 除外

(2) 技改扩建后项目生产废水收集后经专置污水管网排入中山市三角镇高平污水处理有限公司进行处理,其中60%达到回用水标准后作为回用水经中水回用系统处理后由专用管道返回给金美达公司作为生产用水使用,另外40%的尾水经达到广东省《电镀水污染物排放标准》(DB44/1597-2015)表1中珠三角排放限值后排入洪奇沥水道。

项目生产废水排入高平污水处理有限公司,水质需满足高平污水处理有限公司的接纳要求,具体见下表

表 2.2-11 高平污水处理有限公司设计进水水质要求

	主要污染物浓度(mg/L)										
废水种类	pН	CODcr	氰化 物	Cr ⁶⁺	总铜	总镍	总锌	石油 类	TP	TN	氨氮
前处理废水	5.5-8	≤1500	≤0.2	≤0.1	≤0.3	≤0.1	≤1.0	≤300	≤60	≤80	≤30
电镀镍废水	6-6.5	≤350	≤0.2	≤0.1	≤0.3	≤120	≤1.0	≤2.0	≤2.0	≤2.0	≤2.0
化学镍废水	6-6.5	≤350	≤0.2	≤0.1	≤0.3	≤120	≤1.0	≤2.0	≤2.0	≤2.0	≤2.0
含氰废水	7.5-8	≤700	≤150	≤0.1	≤60	≤0.1	≤30	≤2.0	≤2.0	≤2.0	≤30
含铬废水	3~5	≤300	≤0.2	≤160	≤0.3	≤0.1	≤1.0	≤2.0	≤2.0	≤2.0	≤2.0
综合废水	3~5	≤400	≤0.2	≤0.1	≤80	≤0.1	≤80	≤2.0	≤40	≤80	≤30
混排废水	4~5	≤500	≤60	≤30	≤50	≤20	≤30	≤100	≤60	≤80	≤50

高平污水处理有限公司处理后的尾水达广东省《电镀水污染物排放标准》(DB44/1597-2015)表 1 中珠三角排放限值,见下表。含铬废水、电镀镍废水、化学镍废水、均属于第一类控制污染物,第一类污染物应在车间或车间处理设施排放口处达标排放。高平污水处理有限公司将含铬废水、电镀镍废水、化学镍废水处理系统分别设置在独立车间内

表 2.2-12 广东省地方标准《电镀水污染物排放标准》(DB44/1597-2015)表 1 珠三角排放限值摘录

1 总铬 (mg/l)	序号	污染物	排放限值	污染物排放监控位置
3	1	总铬 (mg/l)	0.5	高平污水处理厂分类处理设施排放口
4	2	六价铬(mg/l)	0.1	高平污水处理厂分类处理设施排放口
5 总银 (mg/l) 0.1 高平污水处理厂分类处理设施排放口 6 总铅 (mg/l) 0.1 高平污水处理厂分类处理设施排放口 7 总汞 (mg/l) 0.005 高平污水处理厂分类处理设施排放口 8 总铜 (mg/l) 0.5 高平污水处理厂废水总排放口 9 总锌 (mg/l) 1.0 高平污水处理厂废水总排放口 10 总铁 (mg/l) 2.0 高平污水处理厂废水总排放口 11 总铝 (mg/l) 2.0 高平污水处理厂废水总排放口 12 pH 6-9 高平污水处理厂废水总排放口 13 悬浮物 (mg/l) 30 高平污水处理厂废水总排放口 14 化学需氧量(mg/l) 80 高平污水处理厂废水总排放口 15 氨氮 (mg/l) 15 高平污水处理厂废水总排放口 16 总氮 (mg/l) 20 高平污水处理厂废水总排放口 17 总磷 (mg/l) 1.0 高平污水处理厂废水总排放口 18 石油类 (mg/l) 2.0 高平污水处理厂废水总排放口 19 氟化物 (mg/l) 10 高平污水处理厂废水总排放口 20 总氧化物 (mg/l) 10 高平污水处理厂废水总排放口 20 高平污水处理厂废水总排放口 高平污水处理厂废水总排放口	3	总镍 (mg/l)	0.5	高平污水处理厂分类处理设施排放口
6 总铅 (mg/l) 0.1 高平污水处理厂分类处理设施排放口 7 总汞 (mg/l) 0.005 高平污水处理厂分类处理设施排放口 8 总铜 (mg/l) 0.5 高平污水处理厂废水总排放口 9 总锌 (mg/l) 1.0 高平污水处理厂废水总排放口 10 总铁 (mg/l) 2.0 高平污水处理厂废水总排放口 11 总铝 (mg/l) 2.0 高平污水处理厂废水总排放口 12 pH 6-9 高平污水处理厂废水总排放口 13 悬浮物 (mg/l) 30 高平污水处理厂废水总排放口 14 化学需氧量 (mg/l) 80 高平污水处理厂废水总排放口 15 复氮 (mg/l) 15 高平污水处理厂废水总排放口 16 总氮 (mg/l) 20 高平污水处理厂废水总排放口 17 总磷 (mg/l) 10 高平污水处理厂废水总排放口 18 石油类 (mg/l) 2.0 高平污水处理厂废水总排放口 19 氟化物 (mg/l) 0.2 高平污水处理厂废水总排放口 20 高平污水处理厂废水总排放口 10 高平污水处理厂废水总排放口 11 总磷 (mg/l) 1.0 高平污水处理厂废水总排放口 11 总磷 (mg/l) 1.0 高平污水处理厂废水总排放口 11 总磷 (mg/l) 1.0 高平污水处理厂废水总排放口 11 高平污水处理厂废水总排放口	4	总镉 (mg/l)	0.01	高平污水处理厂分类处理设施排放口
7	5	总银 (mg/l)	0.1	高平污水处理厂分类处理设施排放口
8 总铜 (mg/l) 0.5 高平污水处理厂废水总排放口 9 总锌 (mg/l) 1.0 高平污水处理厂废水总排放口 10 总铁 (mg/l) 2.0 高平污水处理厂废水总排放口 11 总铝 (mg/l) 2.0 高平污水处理厂废水总排放口 12 pH 6-9 高平污水处理厂废水总排放口 13 悬浮物 (mg/l) 30 高平污水处理厂废水总排放口 14 化学需氧量 (mg/l) 80 高平污水处理厂废水总排放口 15 氨氮 (mg/l) 15 高平污水处理厂废水总排放口 16 总氮 (mg/l) 20 高平污水处理厂废水总排放口 16 总氮 (mg/l) 20 高平污水处理厂废水总排放口 17 总磷 (mg/l) 1.0 高平污水处理厂废水总排放口 18 石油类 (mg/l) 2.0 高平污水处理厂废水总排放口 19 氟化物 (mg/l) 10 高平污水处理厂废水总排放口 19 氟化物 (mg/l) 10 高平污水处理厂废水总排放口 20 总氰化物 (mg/l) 0.2 高平污水处理厂废水总排放口 19 氧化物 (mg/l) 0.2 高平污水处理厂废水总排放口 10 10 10 10 10 10 10 1	6	总铅 (mg/l)	0.1	高平污水处理厂分类处理设施排放口
9 总锌 (mg/l) 1.0 高平污水处理厂废水总排放口 10 总铁 (mg/l) 2.0 高平污水处理厂废水总排放口 11 总铝 (mg/l) 2.0 高平污水处理厂废水总排放口 12 pH 6-9 高平污水处理厂废水总排放口 13 悬浮物 (mg/l) 30 高平污水处理厂废水总排放口 14 化学需氧量 (mg/l) 80 高平污水处理厂废水总排放口 15 氨氮 (mg/l) 15 高平污水处理厂废水总排放口 16 总氮 (mg/l) 20 高平污水处理厂废水总排放口 16 总氮 (mg/l) 20 高平污水处理厂废水总排放口 17 总磷 (mg/l) 1.0 高平污水处理厂废水总排放口 18 石油类 (mg/l) 2.0 高平污水处理厂废水总排放口 19 氟化物 (mg/l) 10 高平污水处理厂废水总排放口 20 总氰化物 (mg/l) 10 高平污水处理厂废水总排放口 19 氟化物 (mg/l) 0.2	7	总汞 (mg/l)	0.005	高平污水处理厂分类处理设施排放口
10 总铁 (mg/l) 2.0 高平污水处理厂废水总排放口	8	总铜 (mg/l)	0.5	高平污水处理厂废水总排放口
11 总铝 (mg/l) 2.0 高平污水处理厂废水总排放口	9	总锌 (mg/l)	1.0	高平污水处理厂废水总排放口
12 pH 6-9 高平污水处理厂废水总排放口 13 悬浮物 (mg/l) 30 高平污水处理厂废水总排放口 14 化学需氧量 (mg/l) 80 高平污水处理厂废水总排放口 15 氨氮 (mg/l) 15 高平污水处理厂废水总排放口 16 总氮 (mg/l) 20 高平污水处理厂废水总排放口 17 总磷 (mg/l) 1.0 高平污水处理厂废水总排放口 18 石油类 (mg/l) 2.0 高平污水处理厂废水总排放口 19 氟化物 (mg/l) 10 高平污水处理厂废水总排放口 20 总氰化物 (mg/l) 0.2 高平污水处理厂废水总排放口	10	总铁 (mg/l)	2.0	高平污水处理厂废水总排放口
13	11	总铝 (mg/l)	2.0	高平污水处理厂废水总排放口
14 化学需氧量(mg/l) 80 高平污水处理厂废水总排放口 15 氨氮 (mg/l) 15 高平污水处理厂废水总排放口 16 总氮 (mg/l) 20 高平污水处理厂废水总排放口 17 总磷 (mg/l) 1.0 高平污水处理厂废水总排放口 18 石油类 (mg/l) 2.0 高平污水处理厂废水总排放口 19 氟化物 (mg/l) 10 高平污水处理厂废水总排放口 20 总氰化物 (mg/l) 0.2 高平污水处理厂废水总排放口	12	рН	6-9	高平污水处理厂废水总排放口
15 氨氮(mg/l) 15 高平污水处理厂废水总排放口 16 总氮(mg/l) 20 高平污水处理厂废水总排放口 17 总磷(mg/l) 1.0 高平污水处理厂废水总排放口 18 石油类(mg/l) 2.0 高平污水处理厂废水总排放口 19 氟化物(mg/l) 10 高平污水处理厂废水总排放口 20 总氰化物(mg/l) 0.2 高平污水处理厂废水总排放口	13	悬浮物(mg/l)	30	高平污水处理厂废水总排放口
16 总氮 (mg/l) 20 高平污水处理厂废水总排放口	14	化学需氧量(mg/l)	80	高平污水处理厂废水总排放口
17 总磷 (mg/l) 1.0 高平污水处理厂废水总排放口 18 石油类 (mg/l) 2.0 高平污水处理厂废水总排放口 19 氟化物 (mg/l) 10 高平污水处理厂废水总排放口 20 总氰化物 (mg/l) 0.2 高平污水处理厂废水总排放口	15	氨氮(mg/l)	15	高平污水处理厂废水总排放口
18 石油类 (mg/l) 2.0 高平污水处理厂废水总排放口 19 氟化物 (mg/l) 10 高平污水处理厂废水总排放口 20 总氰化物 (mg/l) 0.2 高平污水处理厂废水总排放口	16	总氮 (mg/l)	20	高平污水处理厂废水总排放口
19 氟化物 (mg/l) 10 高平污水处理厂废水总排放口 20 总氰化物 (mg/l) 0.2 高平污水处理厂废水总排放口	17	总磷 (mg/l)	1.0	高平污水处理厂废水总排放口
20 总氰化物 (mg/l) 0.2 高平污水处理厂废水总排放口	18	石油类(mg/l)	2.0	高平污水处理厂废水总排放口
	19	氟化物(mg/l)	10	高平污水处理厂废水总排放口
单位产品基准排 多层镀 250 排水量计量位置与污染排放监控位置	20	总氰化物(mg/l)	0.2	高平污水处理厂废水总排放口
	单位产品基准排	多层镀	250	排水量计量位置与污染排放监控位置

	水量,L/m²	单层镀	100	一致
--	---------	-----	-----	----

根据《中山市三角镇高平污水处理有限公司第四期技改项目环境影响报告书》,目前整个电镀园区内电镀企业最新环评批复中已经明确规定各生产企业必须将企业的废水回用率达到 60%以上,且不允许厂内对生产废水进行中水回用,所有的回用水必须采用高平污水处理有限公司的回用。高平污水处理有限公司的回用水规模是按照处理规模的 60%设计运行,同时高平污水处理有限公司不接受来自非电镀园区内企业的电镀废水,所以高平污水处理有限公司生产的电镀回用水能被全部电镀企业接纳使用。

根据高平污水处理有限公司提供的技术资料,本项目回用水水质要求如下

序号	污染物	回用水标准
1	色度	3 倍
2	嗅	无
3	浊度	1NTU
4	рН	6.5~7.5
5	电导率	150 μ s/cm
6	化学需量(CODcr)	5mg/L

表 2.2-13 本项目回用水执行标准

2、大气污染物排放标准

有组织排放的氯化氢、硫酸雾、氮氧化物、氰化氢、铬酸雾执行《电镀污染物排放标准》(GB21900-2008)中表 5 新建企业大气污染物排放限值;颗粒物、锡及其化合物执行广东省地方标准《大气污染物排放限值》(DB44/27-2001)中第二时段二级标准。无组织排放的氯化氢、硫酸雾、氮氧化物、氰化氢、铬酸雾、颗粒物、锡及其化合物执行广东省地方标准《大气污染物排放限值》(DB44/27-2001)第二时段厂界无组织排放监控浓度限值的要求;臭气浓度执行《恶臭污染物排放标准》(GB14554-93)厂界标准值二级标准(新扩改建项目)。因此,本项目污染物排放标准见下表。

	衣 2.2-14 工乙质气污染物取局几叶排放限值浓度单位: mg/m°、逐率单位 kg/n								
序		污染物	最高允许排放浓度	排气筒高度	最高允许排放	标准来源			
号		17条初	mg/m ³	m	速率 kg/h	小1 庄木切			
1		氯化氢	30	50	/				
2		硫酸雾	30	50	/				
3	有组织	氮氧化物	200	50	/	GB21900-2008			
4	7 组织	氰化氢	0.5	50	/				
5		铬酸雾	0.05	50	/				
6		颗粒物	120	50	19	DB44/27-2001			

表 2.2-14 工艺废气污染物最高允许排放限值浓度单位: mg/m³、速率单位 kg/h

序 号		污染物 最高允许排放浓度 mg/m³		排气筒高度 最高允许排放 m 速率 kg/h		标准来源	
7		臭气浓度	6000 (无量纲)	50	/	GB14554-93	
9		氯化氢	0.2		/		
10		硫酸雾	1.2		/		
11		氰化氢	0.024	/		DB44/27-2001	
12	无组织	铬酸雾	0.006		/		
13		氮氧化物	0.12				
14		颗粒物	1.0		/		
15		臭气浓度	20 (无量纲)		/	GB14554-93	
17	单位产	品基准排气量	镀锌 18.6m³/m² 镀件钻 其他镀种(镀铜、			GB21900-2008	

表 2.2-15《电镀污染物排放标准》(GB21900-2008)中表 6单位产品基准排气量

序号	工艺种类	基准排气量 m³/m² (镀件镀层)	排气量计量位置
1	镀锌	18.6	车间或生产设施排气筒
2	镀铬	74.4	车间或生产设施排气筒
3	其他镀种 (镀铜、镍等)	37.3	车间或生产设施排气筒
4	阳极氧化	18.6	车间或生产设施排气筒

3、噪声控制标准

本项目营运期噪声执行《工业企业厂界环境噪声排放标准》(GB12348-2008)2类标准。

表 2.2-16 厂界噪声排放限值

适用区域	昼间 dB(A)	夜间 dB(A)	依据
2	60	50	GB12348-2008

4、固体废物污染控制标准

固体废物中一般工业固体废物执行《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001)及其修改单;危险废物执行《危险废物贮存污染控制标准》(GB18597-2001)及其修改单。

2.3污染控制要求及环境保护措施

2.3.1 污染控制要求

(1)项目所有的污染源均应得到有效和妥善地控制,将项目营运活动对环境的影

响降低到最小程度。

- (2)项目产生的生产废水排入高平污水处理有限公司处理;生活污水经三级化粪 池预处理后排入三角镇生活污水处理厂处理。
- (3)项目应对废气采取有效的防治措施,使附近区域的环境空气质量不因项目的 建设而造成不良影响。
- (4) 严格控制项目主要噪声源对本项目所在区域可能带来的影响,使声环境质量 达到拟建项目所在区域的声环境功能要求。
- (5)项目产生的固体废物必须合理收集存储并委托相关单位处置,确保处置过程中不产生二次污染。

2.3.2 环境保护目标

(1) 水环境保护目标

根据《广东省地表水环境功能区划》(粤府[1999]553 号文)与《中山市水功能区管理办法》(中府[2008]96 号文)以及《中山市城市总体规划》,洪奇沥水道属于III类水环境功能区,执行国家标准《地表水环境质量标准》(GB3838-2002)III类水质标准。因此,本项目的水环境保护目标为上述地表水体水质。

(2) 环境空气保护目标

主要保护评价范围的环境空气质量要达到(GB3095-2012)中二级标准;特别是附近的居民生活区等敏感点不受本项目的营运而产生大的影响。着重控制的废气为氯化氢、氰化氢。

(3) 声环境保护目标

保护建设项目、附近地区、敏感点的声环境符合功能区要求。噪声应重点控制生产过程、原材料和产品运输过程所产生的噪声对厂界及周边环境的影响。

(4) 固体废物控制目标

控制营运期间生活垃圾、一般工业固体废物及危险废物对周围环境的影响,确定建设区域固体废物得到妥善处理。

2.4评价等级与评价范围

2.4.1 评价等级

(1) 水环境

根据《环境影响评价技术导则地表水环境》(HJ2.3-2018),建设项目的地表水环境影响主要水污染影响与水文影响,根据其主要影响,建设项目的地表水环境影响划分为水污染影响型、水文要素影响型以及两者兼有的复合影响型。

根据《环境影响评价技术导则地表水环境》(HJ 2.3-2018),水污染影响型建设项目根据排放方式和废水排放量划分评价等级。

评价等级	判定依据						
F F F F F F F F F F	排放方式	废水排放量 Q/(m³/d);水污染物当量数 W/(无量纲)					
一级	直接排放	Q≥20000 或 W≥600000					
二级	直接排放	其他					
三级 A	直接排放	Q<200 且 W<6000					
三级 B	间接排放						

表 2.4-1 水污染影响型建设项目评价等级判定

注 1: 水污染物当量数等于该污染物的年排放量除以该污染物的污染当量值(见附录 A),计算排放污染物的污染物当量数,应区分第一类水污染物和其他类水污染物,统计第一类污染物当量数总和,然后与其他类污染物按照污染物当量数从大到小排序,取最大当量数作为建设项目评价等级确定的依据。

注 2: 废水排放量按行业排放标准中规定的废水种类统计,没有相关行业排放标准要求的通过工程分析合理确定,应统计含热量大的冷却水的排放量,可不统计间接冷却水、循环水以及其他含污染物极少的清净下水的排放量。

注 3: 厂区存在堆积物(露天堆放的原料、燃料、废渣等以及垃圾堆放场)、降尘污染的,应将初期雨污水纳入废水排放量,相应的主要污染物纳入水污染当量计算。

注 4: 建设项目直接排放第一类污染物的,其评价等级为一级;建设项目直接排放的污染物为受纳水体超标因子的,评价等级不低于二级。

注 5: 直接排放受纳水体影响范围涉及饮用水水源保护区、饮用水取水口、重点保护与珍稀水生生物的栖息地、重要水生生物的自然产卵场等保护目标时,评价等级不低于二级。

注 6: 建设项目向河流、湖库排放温排水引起受纳水体水温变化超过水环境质量标准要求,且评价范围有水温敏感目标时,评价等级为一级。

注 7: 建设项目利用海水作为调节温度介质,排水量 \geq 500 万 m^3/d ,评价等级为一级;排水量<500 万 m^3/d ,评价等级为二级。

注 8: 仅涉及清净下水排放的,如其排放水质满足受纳水体水环境质量标准要求的,评价等级为三级 A。

注 9: 依托现有排放口,且对外环境未新增排放污染物的直接排放建设项目,评价等级参照间接排放,定为三级 B。

注 10: 建设项目生产工艺中有废水产生,但作为回水利用,不排放到外环境的,按三级 B 评价。

本项目生产废水经专置污水管网集中排入中山市三角镇高平污水处理有限公司进行处理,其中60%作为回用水经专用管道返回给金美达公司作为生产用水使用,另外40%的尾水经高平污水处理有限公司排污口最终排入洪奇沥水道。生活污水经污水收集管网输送到三角镇生活污水处理厂进行处理,达标后排入洪奇沥水道。即项目生活污水、生产废水间接排放,地表水评价等级为三级B。

(2) 大气环境

根据《环境影响评价技术导则——大气环境》(HJ2.2-2018)规定的评价工作级别的划分原则和方法,选择项目污染源正常排放的主要污染物及排放参数,采用附录 A 推荐模型中估算模型分别计算项目污染源的最大环境影响,然后按评价工作分级判据进行分级。

1、评价工作等级方法

根据项目污染源初步调查结果,分别计算项目排放主要污染物的最大地面空气质量浓度占标率 P(i 第 i 个污染物,简称"最大浓度占标率"),及第 i 个污染物的地面空气质量浓度达到标准值的 10%时所对应的最远距离 D10%。其中 Pi 定义为:

$$P_i = \frac{\rho_i}{\rho_{0i}} \times 100 \%$$

式中: Pi—第 i 个污染物的最大地面浓度占标率, %;

 ho_i —采用估算模式计算出的第i个污染物的最大地面浓度,mg/m3;

 ho_{oi} —第 i 个污染物的环境空气质量标准,mg/m3。一般选用 GB 3095 中 1h 平均质量浓度的二级浓度限值,如项目位于一类环境空气功能区,应选择相应的一级浓度限值;对该标准中未包含的污染物,使用 5.2 确定的各评价因子 1h 平均质量浓度限值。对仅有8h 平均质量浓度限值、日平均质量浓度限值或年平均质量浓度限值的,可分别按 2 倍、3 倍、6 倍折算为 1h 平均质量浓度限值。

	AC 2.1 2 M DEL JARM MAGILLA										
项目	取值时间	浓度限值	执行标准								
	年平均	60ug/m ³									
SO_2	24 小时平均	150ug/m ³	 								
	1 小时平均	500ug/m ³	小児工气灰里你在》(GB3093-2012)								
NO ₂	年平均	40ug/m ³									

表 2.4-2 评价因子和评价标准表

	24 小时平均	80ug/m ³					
	1小时平均	200ug/m ³					
DM	年平均 70ug/m³						
PM ₁₀	24 小时平均	150ug/m ³					
	年平均	200ug/m ³					
TSP	24 小时平均	300ug/m ³					
氯化氢	日平均	15 ug/m ³	"环接影响还像并予良则 十年环接"				
录(化全)	1h 平均	50ug/m ³	《环境影响评价技术导则 大气环境》 (HJ2.2-2018)表 D.1 其他污染物空气质量浓度参				
硫酸	日平均	100 ug/m ³	考限值				
刊店包	1h 平均	300 ug/m^3					
铬酸雾	一次浓度	0.0015 mg/m ³	《工业企业设计卫生标准》(TJ36-79)中居住 区容许浓度				
氰化氢	昼夜平均	0.01 mg/m^3	前苏联(1974) ,居住区最高容许浓度				
			《环境影响评价技术导则 大气环境》				
TVOC	8 小时平均	600 ug/m ³	(HJ2.2-2018)表 D.1 其他污染物空气质量浓度参				
			考限值				
非甲烷总烃	lh 平均	2000 ug/m ³	《大气污染物综合排放详解》中的标准取值				
			《环境影响评价技术导则 大气环境》				
氨	1h 平均	200 ug/m ³	(HJ2.2-2018)表 D.1 其他污染物空气质量浓度参				
			考限值				

表 2.4-3 大气评价工作等级划分

评价工作等级	评价工作分级判据
一级	Pmax≥10%
二级	1%≤Pmax<10%
三级	Pmax<1%

2、估算模式参数

本项目估算模式预测所采用的模型参数见下表。

表 2.4-4 估算模型参数表

	参数	取值		
城市/农村	城市/农村选项	城市		
规 [1772]	人口数 (城市选项时)	100000		
最	城市/农村选项 城市 人口数(城市选项时) 100000 最高环境温度/℃ 38.7 最低环境温度/℃ 1.9 土地利用类型 城市 区域湿度条件 潮湿气候 考虑地形 ■是 □否 地形数据分辨率/m 90 考虑岸线熏烟 □是 ■否 岸线距离/km /			
最	低环境温度/℃	1.9		
-	土地利用类型	城市		
	区域湿度条件	潮湿气候		
是否考虑地形	考虑地形	■是 □否		
人。	地形数据分辨率/m	90		
	考虑岸线熏烟	□是 ■否		
是否考虑岸线熏烟	岸线距离/km	/		
	岸线方向/°	/		

表 2.4-5 预测气象地面特征参数表

序号	扇区	时段	正午反照率	BOWEN	粗糙度
1	0-230	冬季(12,1,2 月)	0.18	0.5	1
2	0-230	春季(3,4,5 月)	0.14	0.5	1
3	0-230	夏季(6,7,8 月)	0.16	1	1
4	0-230	秋季(9,10,11 月)	0.18	1	1
5	230-360	冬季(12,1,2 月)	0.14	0.3	0.0001
6	230-360	春季(3,4,5 月)	0.12	0.1	0.0001
7	230-360	夏季(6,7,8 月)	0.1	0.1	0.0001
8	230-360	秋季(9,10,11 月)	0.14	0.1	0.0001

注:本报告将项目所在区域地表分为两个扇区:0°~230°扇形区域为城市;230°~360°扇形区域为水面(洪奇沥水道)。

3、区域地形数据

地形数据来源于 http://srtm.csi.cgiar.org/,数据精度为 3 秒(约 90m),即东西向网格间距为 3(秒)、南北向网格间距为 3(秒),区域四个顶点的坐标(经度,纬度)为:

区域四个顶点的坐标(经度,纬度)为:

西北角(113°28′06.9600″E, 22°42′35.7480″N)

东北角(113°28′17.4000″E, 22°42′35.7480″N)

西南角(113°28′06.9600″E, 22°42′28.9080″N)

东南角(113°28′17.4000″E,22°42′28.9080″N)

东西向网格间距:3(秒),南北向网格间距:3(秒),高程最大值:515(m)

4、估算污染源强

以项目中心点为(0.0)点,原点坐标经纬度: N22°42'32.45", E113°28'12.52",本项目估算模式预测所采用的源强见下表。

表 2.4-6 项目主要废气源强统计表(点源)

编号	名称	排气筒底部	Y Y	排气筒 底部海 拔高度 /m	排气筒高度 /m	排气筒 出口内 径/m	烟气流 速/ (m/s)	烟气温 度/℃	年排放 小时数 /h	排放工 况	污染物	排放速 率/ (kg/h)	
G1	酸雾废气	-11	-9	-2	50	1.3	12.56	25	4800	正常排	氯化氢	0.017	
										放	硫酸雾	0.017	
G2	氨气	-7	-12	-2	50	1.3	12.56	25	4800	正常排 放	氨	0.009	
G3	酸雾废气	-4	-15	-2	50	1.1	11.69	25	4800	正常排 放	氰化氢	0.020	
G4	水转印、电 泳、喷漆工序	喷漆工序 2	贲漆工序 2 -19	-19	-2	50	0.6	14.74	25	4800	正常排	非甲烷 总烃	0.025
	废气										放	TVOC	0.025
	// V										颗粒物	0.120	
G5	酸雾废气	7	-23	-2	50	0.6	14.74	25	4800	正常排 放	铬酸雾	0.0002	
9.6	14. (15. 15. 15. 15. 15. 15. 15. 15. 15. 15.	10	25		.		11.60	2.5	4000	正常排	氯化氢	0.004	
G6	酸雾废气	12	-27	-2	50	1.1	11.69	25	4800	放	硫酸雾	0.001	
G7	氨气	7	0	-2	50	1.2	12.28	25	4800	正常排 放	氨	0.004	
G8	酸雾废气	11	-3	-2	50	1.2	12.28	25	4800	正常排 放	氰化氢	0.018	
-	拉泰克片	10				1.0	10.00		4000	正常排	氯化氢	0.012	
G9	酸雾废气	12	-3	-2	50	1.2	12.28	25	4800	放	硫酸雾	0.007	
G10	氨气	12	-4	-2	50	1.3	12.56	25	4800	正常排	氨	0.002	

										放		
	锅炉燃烧废									正常排	二氧化 硫	0.036
G11	树炉燃烧及 气	23	-22	-2	50	0.4	4.26	80	2400	放	氮氧化 物	0.054
											颗粒物	0.025

表 2.4-7 项目主要废气源强统计表(面源)

编号	名称	面源起点鱼	丛 标(m)	五源海 <u></u> 北京庄/	西海方沙克庄(年排放	批光工加	运为.Hm	污染物排放速
細石	石 柳	X	у	面源海拔高度/m	面源有效高度/m	小时数/h	排放工况	污染物	率/(kg/h)
		-43	10					氯化氢	0.009
		19	-38					硫酸雾	0.009
		36	-17				正常排放	氨	0.005
1	生产车间 2F	30	-1/	-2	8.85	4800		铬酸雾	0.00003
		-25 33	22					氰化氢	0.001
							非甲烷总烃	0.02	
			-43					TVOC	0.02
		-43	10					颗粒物	0.13
		-43	10					氯化氢	0.0004
2	生产车间 4F	19	-38	-2	21.75	4800	正常排放	硫酸雾	0.001
		36	-17					氰化氢	0.010

			I	I	I			1	
		-25	33						
		-43	10						
		-43	10					氯化氢	0.001
	4. 文左闾 5 瓦	19	-38					与	0.002
3	生产车间 5F	36	-17	-2	27.8	4800	正常排放	氨	0.002
		-25	33					复以层	0.0025
		-43	10					氰化氢	0.0035
		-43	10	-2	33.85	4800	正常排放	氯化氢	0.005
		19	-38					硫酸雾	0.003
4	生产车间 6F	36	-17					氨	0.0005
		-25	33					铬酸雾	0.0001
		-43	10					氰化氢	0.005
		-43	10					硫酸雾	0.002
		19	-38				正常排放	氨	0.001
5	生产车间 7F	36	-17	-2	39.9	4800		氰化氢	0.001
		-25	33					非甲烷总烃	0.002
		-43	10					TVOC	0.002

备注: 面源高度取值为窗户高度一半,项目生产车间 1F、2F 楼层高度约为 6.85m, 3F~7F 楼层高度约为 6.05m,窗户中心高度取 2m。

5、正常排放下主要污染源估算模式计算结果

表 2.4-8 估算模式计算结果统计

序号	污染源 名称	方位角 度(°)	下风距 离(m)	相对源 高(m)	污染物	最大小时落 地浓度 (µg/m³)	最大小 时浓度 占标率 (%)	D ₁₀ %
					氯化氢	0.34	0.68	0
1	G1	100	471	4.62	硫酸雾	0.34	0.11	0
2	G2	100	471	4.62	氨	0.18	0.09	0
3	G3	100	471	4.62	氰化氢	0.40	1.34	0
					非甲烷总烃	0.50	0.03	0
4	G4	100	471	4.62	TVOC	0.50	0.04	0
					颗粒物	2.40	0.53	0
5	G5	100	471	4.62	铬酸雾	0.00	0.27	0
	06	100	471	4.62	氯化氢	0.08	0.16	0
6	G6	100	471	4.62	硫酸雾	0.02	0.01	0
7	G7	100	471	4.62	氨	0.08	0.04	0
8	G8	100	471	4.62	氰化氢	0.36	1.20	0
0	CO	100	471	4.62	氯化氢	0.24	0.48	0
9	G9	100	471	4.62	硫酸雾	0.14	0.05	0
10	G10	100	471	4.62	氨	0.04	0.02	0
					二氧化硫	0.47	0.09	0
11	G11	150	567	3.28	氮氧化物	0.71	0.35	0
					颗粒物	0.33	0.07	0
					氯化氢	9.00	17.99	175
					硫酸雾	9.00	3.00	0
					氨	5.00	2.50	0
12	N/1		(5		铬酸雾	0.03	2.00	0
12	M1	0	65	0	氰化氢	1.00	3.33	0
					非甲烷总烃	19.99	1.00	0
					TVOC	19.99	1.67	0
					颗粒物	129.96	14.44	275
					氯化氢	0.09	0.17	0
13	M2	0	47	0	硫酸雾	0.22	0.07	0
					氰化氢	2.19	7.29	0
					氯化氢	0.15	0.31	0
14	M3	0	48	0	氨	0.31	0.15	0
					氰化氢	0.54	1.79	0
					氯化氢	0.58	1.15	0
15	M4	0	41	0	硫酸雾	0.35	0.12	0
					氨	0.06	0.03	0

					铬酸雾	0.01	0.77	0
					氰化氢	0.58	1.92	0
					硫酸雾	0.18	0.06	0
					氨	0.09	0.05	0
16	M5	M5 0	41	0	氰化氢	0.09	0.30	0
					非甲烷总烃	0.18	0.01	0
					TVOC	0.18	0.02	0

(3) 噪声

根据《中山市声环境功能区划方案》(中环〔2018〕87号〕确定,项目所在区域为居住、工业混杂的区域,属2类声环境功能区。同时,项目建设前后噪声级的变化量小于3dB(A),且受影响人口数量变化不大,根据《环境影响评价技术导则声环境》(HJ2.4-2009)的环境影响评价工作分级原则及项目的工程情况,噪声评价工作等级定为二级。

评价内容	项目	指标	评价等级
	建设项目类别	小型	
声	建设项目所在区功能	2 类	
环	噪声种类及数量	增加	二级
境	影响人口	变化不大	
	项目建设前后厂区噪声级变化	控制<3dB(A)	

表 2.4-9 声环境影响评价等级划分

(4) 风险评价

根据《建设项目环境风险评价技术导则》(HJ169-2018),环境风险评价工作等级划分为一级、二级、三级和简单分析。根据建设项目涉及的物质及工艺系统危险性和所在地的环境敏感性确定环境风险潜势,按下表 2.4-10 确定评价工作等级。

#	2 4 1	いな怪工	<i>ll-松山</i>	定一览表
*	2.4- I	() 12440 € 1	化美双井	一一点天

环境风险潜势	IV, IV ⁺	III	II	I
评价工作等级	_		三	简单分析 a

a 是相对于详细评价工作内容而言,在描述危险物质、环境影响途径、环境危害后果、 风险防范措施等方面给出定性的说明,见附录 A。

①危险物质数量与临界量比值(Q)

根据《建设项目环境风险评价技术导则》(HJ169-2018)附录 C,计算所涉及的每种危险物质在厂界内的最大存在总量与其在附录 B 中对应临界量的比值 Q。在不同厂区的同一种物质,按其在厂界内的最大存在总量计算。

当只涉及一种危险物质时, 计算该物质的总量与其临界量比值, 即为 Q;

当存在多种危险物质时,则按下式计算物质总量与其临界量比值(Q):

$$Q = \frac{q_1}{Q_1} + \frac{q_2}{Q_2} + \dots + \frac{q_n}{Q_n}$$

式中: q₁, q₂, ..., q_n——每种危险物质的最大存在总量, t;

 Q_1 , Q_2 , ..., Q_n ——每种危险物质的临界量, t。

当 Q<1 时,该项目环境风险潜势为I。

当 Q≥1 时,将 Q 值划分为: (1) 1≤Q<10; (2) 10≤Q<100; (3) Q≥100。

本项目建成后涉及的在《建设项目环境风险评价技术导则》(HJ169-2018)附录 B 的风险物质为氨基磺酸镍、氯化镍、镍角、硫酸镍等。设项目 Q 值确定表详见表 2.4.11。

表 2.4.11 建设项目 O 值确定表

危险物质名 称	最大储存量/t	主要成分	风险物质有效 成分最大存在 总量/t	临界量 /t	Q值	备注
氨基磺酸镍	1	氨基磺酸镍 99%	0.23	0.25	0.926	以镍离 子计
氯化镍	0.5	氯化镍	0.50	0.25	1.980	/
镍角	1	镍	1.00	0.25	4.0	以镍离 子计
硫酸镍	0.5	镍 22.2%,钴 0.05%	0.50	0.25	2.0	以镍离 子计
硼酸	2	/	2.00	50	0.040	健康危 险急性 毒性物 质(类别 2、类别 3)
氰化金钾	0.1	/	0.10	50	0.002	健康危 险急性

						毒性物
						质 (类别
						2、类别
						3)
硫酸铜	1	98%硫酸铜	0.39	0.25	1.561	以铜离
硫酸	1	10%硫酸	0.10	10	0.010	子计
磷铜球	0.5	92%铜	0.46	0.25	1.840	以铜离 子计
氨水	17.61	28%氨水	0.50	10	10	
盐酸	64.67	36%盐酸	2.00	0.25	7.5	
铬酐	2.62	/	0.05	0.25	0.25	以铬离 子计
氰化亚铜	0.31	99%氰化亚铜	0.01	0.25	0.25	以铜离 子计
氰化钠	2.29	/	0.10	0.25	0.25	
铜粒	1.74	/	0.10	0.25	0.25	以铜离 子计
氰化银	1.81	/	0.10	0.25	0.25	以银离 子计
氰化钾	0.91	/	0.08	0.25	0.25	
银板	2.48	99.95%银	0.20	10	0.25	以银离 子计
硫酸铬钾	2.59	/	0.01	0.25	0.042	以铬离 子计
天然气	0.005	/	0.005	10	0.0005	/
		合计			15.3015	

注:项目天然气采用管道天然气,入户管管径为 DN300,管道长度按 100m 计算,天然气密度为 0.7174 kg/m^3 ,天然气临界量参照液化气 10 t 计算。

根据《建设项目环境风险评价技术导则》(HJ169-2018),项目原辅材料最大储存量与临界量的比值 10 < Q=15.3015 < 100。

②行业及生产工艺(M)

根据《建设项目环境风险评价技术导则》(HJ169-2018)附录 C,根据项目所属行业及生产工艺特点,确定 M 值,本项目的 M=5,属于 M4。

表 2.4-12 建设项目 M 值确定表

序号	工艺单元名称	生产工艺	分值	M 分值
1	其他	涉及危险物质使用、贮存	5	5
		项目 <i>M</i> 值∑		5

③危险物质及工艺系统危险性(P)分级

根据《建设项目环境风险评价技术导则》(HJ169-2018)附录 C,根据危险物质数量与临界量比值(Q)和行业及生产工艺(M),按照表 C.2 确定危险物质及工艺系统危险性等级(P)。

危险物质数量与临界量比值(<i>Q</i>)	行业及生产工艺(M)				
心险物灰数重与临外重心值(Q)	M1	M2	М3	M4	
<i>Q</i> ≥100	P1	P1	P2	Р3	
10≤ <i>Q</i> ≤100	P1	P2	Р3	P4	
1≤ <i>Q</i> <10	P2	Р3	P4	P4	

表 2.4-13 危险物质及工艺系统危险性等级判断 (P)

根据上述分析,本项目的 Q 值属于 $10 \le Q < 100$,M 值属于 M4,因此,对照上表,本项目的 P 值为 P4。

④环境敏感程度(E)

(a) 大气环境敏感程度分级

表 2.4-14 大气环境敏感程度分级

分级	大气环境敏感性
	周边 5km 范围内居住区、医疗卫生、文化教育、科研、行政办公等机构人口总数大于 5 万
E1	人,或其他需要特殊保护区域;或周边 500 m 范围内人口总数大于 1000 人;油气、化学品
	输送管线管段周边 200 m 范围内,每千米管段人口数大于 200 人。
	周边 5km 范围内居住区、医疗卫生、文化教育、科研、行政办公等机构人口总数大于 1 万
E2	人,小于 5 万人;或周边 500 m 范围内人口总数大于 500 人,小于 1000 人;油气、化学
	品输送管线管段周边 200 m 范围内,每千米管段人口数大于 100 人,小于 200 人。
	周边 5km 范围内居住区、医疗卫生、文化教育、科研、行政办公等机构人口总数小于 1 万
E3	人;或周边 500 m 范围内人口总数小于 500 人;油气、化学品输送管线管段周边 200 m 范
	围内,每千米管段人口数小于 100 人。

根据企业周边敏感目标调查,所在地周边 5 km 范围内居住区、医疗卫生、文化教育、科研、行政办公等机构人口总数约 2 万人;企业周边 500 m 范围内人口总数大于 500 人、小于 1000 人。因此企业周边大气环境敏感程度为 E2。

(b) 地表水环境敏感程度分级

表 2.4-15 地表水环境敏感程度分级

环境敏感目标		地表水功能敏感性	力能敏感性		
小児	F1	F2	F3		
S1	E1	E1	E2		
S2	E1	E2	E3		
S3	E1	E2	E3		

本项目附近水体水洪奇沥水道(距离 300m)为III类水体,本项目地表水敏感性为较敏感 F2:

本项目排放点下游(顺水流向)10km 范围没有敏感保护目标,因此本项目地表水环境敏感目标分级为S3。综上所述,地表水环境敏感程度为E2。

(c) 地下水环境敏感程度分级

表 2.4-16 地下水环境敏感程度分级

环境敏感目标	地下水功能敏感性					
小児敦心口你	G1	G2	G3			
D1	E1	E1	E2			
D2	E1	E2	E3			
D3	E2	E3	E3			

根据周边敏感目标调查,企业周边无集中式饮用水水源保护区等环境敏感区,根据地下水功能敏感区分区方法,为不敏感 G3;其中地下水功能敏感性分区和包气带防污性能分级分别见表 2.4-17。

表 2.4-17 包气带防污性能分级

分级	包气带岩土渗透性能	本项目适用情况
D3	Mb≥1.0m,K≤1.0×10-6cm/s,且连续、稳定	不适用
D2	0.5m≤Mb≤1.0m,K≤1.0×10 ⁻⁶ cm/s,且连续、稳定 Mb≥1.0m,1.0×10 ⁻⁶ cm/s≤K≤1.0×10 ⁻⁴ cm/s,且连续、稳定	不适用
D1	岩(土)层不满足上述: "D2"和"D3"条件	适用

Mb: 岩土层单层厚度

K: 渗透系数

本项目所在地的包气带岩土的渗透系数大于 1.0×10⁴cm/s, 因为本项目地下水包气带防污性能分级为 D1。综上所述,本项目地下水环境敏感程度为 E2。

⑤环境风险评级工作等级判定

根据《建设项目环境风险评价技术导则》(HJ169-2018)中"建设项目环境风险潜势划分"表,项目环境敏感度最高为 E2 类,危险物质及工艺系统危险性属于 P4。因此,环境风险潜势分别为III,环境风险综合评级工作等级为三级。

表 2.4-18 各环节要素环境风险评价等级一览表

环境要素	危险物质及工艺系统危险性为轻度危害(P4)					
小児安系 	环境敏感程度	风险潜势划分	风险评价等级			
大气	E2	II	三级			
地表水	E2	II	三级			
地下水	E2	II	三级			

(5) 地下水

根据《环境影响评价技术导则地下水环境》(HJ 610-2016),本建设项目属于III类建设项目;本项目所处区域地下水环境敏感程度为不敏感,因此建设项目的地下水评价等级为三级。

(6) 土壤

根据《环境影响评价技术导则土壤环境(试行)》(HJ964-2018)规定,土壤评价工作等级依据建设项目行业分类、占地规模和土壤环境敏感程度分级进行判定。

①项目行业分类

根据《环境影响评价技术导则土壤环境(试行)》(HJ964-2018)附录A.1 土壤环境影响评价类别表可知,本项目属于制造业-石油、化工中的"设备制造、金属制品、汽车制造及其他用品制造"中有电镀工艺的,属于I类建设项目,为污染影响型项目。

②项目占地规模

《环境影响评价技术导则土壤环境(试行)》(HJ964-2018)中将建设项目占地规模分为大型(\geq 50hm²)、中型($5\sim$ 50 hm²)、小型(\leq 5 hm²),本项目占地面积为2550m²,属于小型。

③土壤敏感程度

项目所在地为中山市高平工业区范围,周边均为工业生产企业,因此,项目所在地土壤敏感程度属不敏感。

④等级判定

根据《环境影响评价技术导则土壤环境(试行)》(HJ964-2018)规定,建设项目 地下水环境影响评价工作等级划分按照下表判定。

占地规模	I类			II类			Ⅲ类		
评价等级	大	中	小	大	中	小	大	中	小
敏感	一级	一级	一级	二级	二级	二级	三级	三级	三级
较敏感	一级	一级	二级	二级	二级	三级	三级	三级	
不敏感	一级	二级	二级	二级	三级	三级	三级		
注: "二"表示可不开展土壤环境影响评价工作。									

表 2.4-11 建设项目土壤评价工作等级划分

根据《环境影响评价技术导则土壤环境(试行)》(HJ964-2018)规定,本项目土壤环境影响评价工作等级定为二级。

(7) 生态影响

根据《环境影响评价技术导则(生态影响)》(HJ 19-2011),"改扩建工程的工程占地范围以新增占地(含水域)面积或长度计算。"本项目不新增用地,项目所在区域生态敏感性一般,因此评价等级定为三级。工作等级划分:

影响区域生态敏 感性	工程占地(水域)范围					
	面积≥20km²或长度	面积 2km ² ~20km ² 或长度	面积≤2km²或长度			
55. LT	≥100km	$50 \text{km} \sim 100 \text{km}$	≤50km			
特殊生态敏感区	一级	一级	一级			
重要生态敏感区	一级	二级	三级			
一般区域	二级	三级	三级			

表 2.4-12 生态影响评价工作等级划分

2.4.2 评价范围

(1) 水环境评价范围

项目生产废水经专置污水管网集中排入中山市三角镇高平污水处理有限公司进行处理,其中60%作为回用水经专用管道返回给金美达公司作为生产用水使用,另外40%的尾水经高平污水处理有限公司排污口最终排入洪奇沥水道。项目生活污水经污水收集管网输送到三角镇生活污水处理厂进行处理,达标后排入洪奇沥水道。

根据《环境影响评价技术导则地表水环境》(HJ 2.3-2018),项目地表水评价等级为三级 B。本项目重点分析生活污水、生产废水处理的可依托性。

(2) 大气环境评价范围

根据评价工作等级、项目排气筒高度、当地气象条件以及项目拟建址所在区域环境现状,按《环境影响评价技术导则 大气环境(HJ2.2-2018)》中的有关规定,项目为一级评价项目, $D_{10\%}$ <2.5km,故本项目环境空气评价范围确定为:以项目厂址为中心,边长为 5km 的矩形区域。

(3) 噪声评价范围

项目声环境影响评价等级为二级,评价范围为项目区域及周边200米的区域。

(4) 风险评价范围

按照《建设项目环境风险评价技术导则》(HJ169-2018)的有关规定,本项目大气

环境风险评价范围为厂界周边 5 km 范围内(见图 2.5-1)。地下水环境风险评价范围参照上述地下水环境评价范围(见图 2.5-1)。

(5) 地下水评价范围

项目地下水环境影响评价等级为 III 级,根据《环境影响评价技术导则(地下水环境)》(HJ 610-2016),项目地下水评价范围为建设项目周边面积≤6km²的区域。

(6) 土壤评价范围

项目的土壤环境影响评价工作等级为二级,根据《环境影响评价技术导则—土壤环境(试行)》(HJ964-2018),土壤环境影响评价范围与现状调查范围一致,项目土壤评价范围为场地范围内及厂界 0.2km 范围内。

(7) 生态环境评价范围

生态环境评价范围主要是本建设项目所在的区域及附近区域。

2.5环境敏感点

项目拟建地址周围无重点文物保护单位,项目周边各环境敏感点与项目的方位、距离关系如下。

表 2.5-1 项目附近环境保护目标及敏感点一览

序号	敏感	点名称			保护对	扣 措	环培力能区	所处方位	与项目边界最近距离(m)
万与	行政村	自然村			小児切肥 色	州处力型	与项目边介取处距离(III)		
1		上赖生	-975	58		约 240 人	环境空气二类	SW	900
2		蔡份	-749	56		约 450 人	大气环境风险	SW	715
3		高平村	-151	233		约 600 人	环境空气二类 声环境二类 大气环境风险	W	185
4		下赖生	-564	-502		约 200 人	环境空气二类	SW	645
5	高平村	新二村	-798	-1211		约 150 人		SW	1410
6		顷九	159	-808		约 100 人		SE	840
7		福龙围	511	-384	居民区	约 100 人		SE	590
8		福隆围	44	-1368		约 200 人		SE	1360
9		掘尾	767	-1682		约 150 人		SE	1800
10		新团结村	1483	-1684		约 250 人		SE	2150
11		头围	1927	-1772		约80人		SE	2480
12		团结村	1777	-1969		约 230 人	大气环境风险	SE	2390
13	新洋村	/	-900	-1325		约 120 人		SE	2300
14	冯马村	/	206	1020	-	约 1300 人		NE	1070
14	新兴村	/	434	1450		约300人		NE	2495
15	高平小学		-650	-1060		24 个班		SW	1150
16	冯马小学		1929	853	学校	8 个班		NE	2000
17	横沥中学		434	1450		25 个班		NE	2495

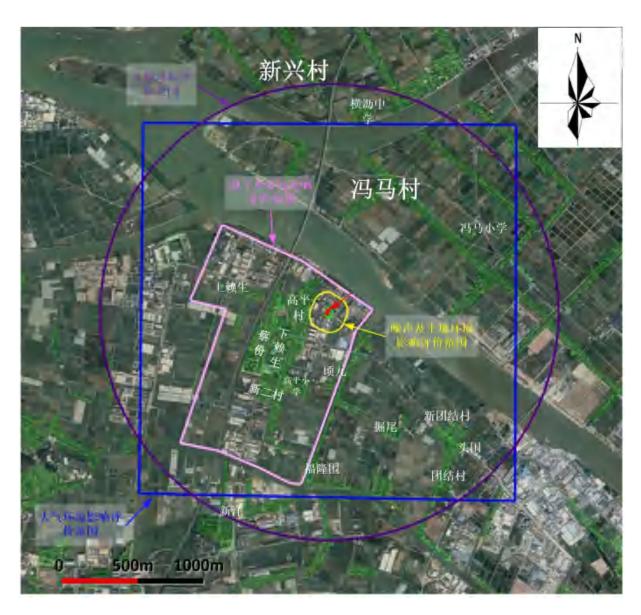


图 2.5-1 项目评价范围示意图及敏感点图

2.6评价因子的识别和筛选

根据项目建设期和生产期的工程行为和污染源的初步分析,结合建设项目的环境特征和保护目标,识别项目建设的环境影响因子,并由此确定本项目的环境评价因子。

2.6.1 大气

现状评价因子: 臭气浓度、氯化氢、硫酸雾、氰化氢、铬酸雾、颗粒物、二氧化硫、 氮氧化物、氨。

影响预测因子: 氯化氢、硫酸雾、氰化氢、铬酸雾、颗粒物、二氧化硫、氮氧化物、 氨。

2.6.2 地表水

影响预测因子: CODcr、BOD5、氨氮、SS。

2.6.3 地下水

现状评价因子: pH、总硬度、溶解性总固体、氨氮、耗氧量、硝酸盐、亚硝酸盐、阴离子表面活性剂、挥发性酚类、氰化物、铜、铁、镍、锌、砷、镉、六价铬、 K^+ 、 Ca^{2+} 、 Na^+ 、 Mg^{2+} 、 SO_4^{2-} 、 CO_3^{2-} 、 HCO_3^- 、 Cl^- 。

影响预测因子: CODcr、氰化氢、总镍、总铜。

2.6.4 噪声

现状和预测评价因子均为等效连续A声级。

2.6.5 土壤

现状评价因子: 四氯化碳、氯仿、氯甲烷、1,1-二氯乙烷、1,2-二氯乙烷、1,1-二氯乙烯、顺 1,2-二氯乙烯、反 1,2-二氯乙烯、二氯甲烷、1,2-二氯丙烷、1,1,1,2-四氯乙烷、1,1,2,2-四氯乙烷、四氯乙烯、1,1,1-三氯乙烷、1,1,2-三氯乙烷、三氯乙烯、1,2,3-三氯丙烷、氯乙烯、苯、氯苯、1,2-二氯苯、1,4-二氯苯、乙苯、苯乙烯、甲苯、间二甲苯+对二甲苯、邻二甲苯、硝基苯、苯胺、2-氯酚、苯并[a]蒽、苯并[a]芘、苯并[b]荧蒽、苯并[k]荧蒽、菌、二苯并[a,h]蒽、茚并[1,2,3-cd]芘、萘、锌、银、氰化物、铜、铬、镍、铅、镉、砷、汞。

影响预测因子: 氰化氢、铬。

表 2.6-1 本项目评价因子筛选结果一览表

序号	环境要素	现状评价因子	预测评价因子
1	大气环境	臭气浓度、氯化氢、硫酸雾、氰化氢、铬酸雾、颗粒 物、二氧化硫、氮氧化物、氨气	氯化氢、硫酸雾、氰化 氢、铬酸雾、颗粒物、 二氧化硫、氮氧化物、 氨气
2	地表水 环境	/	依托可行性分析
3	地下水环境	pH、总硬度、溶解性总固体、氨氮、耗氧量、 硝酸盐、亚硝酸盐、阴离子表面活性剂、挥发性酚类、 氰化物、铜、铁、镍、锌、砷、镉、六价铬、K ⁺ 、 Ca ²⁺ 、Na ⁺ 、Mg ²⁺ 、SO ₄ ²⁻ 、CO ₃ ²⁻ 、HCO ₃ -、Cl-。	CODcr、氰化物、镍、 铜
4	声环境	连续等效A声级	连续等效A声级
5	土壤环境	四氯化碳、氯仿、氯甲烷、1,1-二氯乙烷、1,2-二氯乙烷、1,1-二氯乙烯、顺 1,2-二氯乙烯、反 1,2-二氯乙烯、二氯甲烷、1,2-二氯丙烷、1,1,1-三氯乙烷、1,1,2-四氯乙烷、四氯乙烯、1,1,1-三氯乙烷、1,1,2-三氯乙烷、三氯乙烯、1,2,3-三氯丙烷、氯乙烯、苯、氯苯、1,2-二氯苯、1,4-二氯苯、乙苯、苯乙烯、甲苯、间二甲苯+对二甲苯、邻二甲苯、硝基苯、苯胺、2-氯酚、苯并[a]蒽、苯并[a]芘、苯并[b]荧蒽、苯并[k]荧蒽、菌、二苯并[a,h]蒽、茚并[1,2,3-cd]芘、萘、锌、银、氰化物、铜、铬、镍、铅、镉、砷、汞。	氰化物、铬
6	固体废物	一般工业固废、危险废物	一般工业固废、危险废 物

3 技改扩建前原环评审批内容

3.1历史环评审批情况

原有项目环保手续情况如下:

表 3.1-1 原有项目环保手续汇总表

项目名称	批准建设内容	环评批复情况	验收情况
中山市金美达金属表面处理有限公司项目	用地面积 3700m ² ,建设自动、手动镀锌线各 1 条。准许排放生产废水280t/d	中环建[2002]95 号,2002 年 11 月 19 日	/
建设手工电镀线、自动电镀线各 1 条, 变更电镀线和水量 镀种为镍、铜、铬。准许排放生产废 水 280t/d		中环建登 [2003]02492 号, 2003 年 03 月 19 日	/
中山市金美达金属表面 处理有限公司增加手动 生产线2条项目	扩建后全厂共设五金镀锌电镀生产 线1条、镀银(金)电镀生产线1条、 塑胶电镀生产线1条、五金镀镍(铬) 仿金电镀生产线1条。准许排放生产 废水280t/d	中环建表 [2006]1175 号, 2006 年 9 月 20 日	已验收, [2007]B119, 2007年3月 22日
更正固体危险废物产生 量 产生含氰包装桶 150 个		中环建登〔2009〕 04164号,2009年 8月28日	/
中山市金美达金属表面 处理有限公司技改扩建 项目	用地面积 6230m²,建筑面积 3700m²。 主要从事五金电镀件、塑料电镀件、 首饰饰品生产电镀面积为 361000m²/a。准许排放生产废水 237.5t/d,准许排饭氮氧化物不大于 0.139t/a。	中环建书 [2013]0105 号, 2013 年 11 月 8 日	/

3.2原环评审批内容

3.2.1 原有项目基本情况

- (1)项目地点:中山市三角镇瑞丰路2号之一,**错误!未找到引用源。**地理坐标 N22°42′32.45″、E113°28′12.52″;
 - (2) 建设单位:中山市金美达金属表面处理有限公司;
 - (3) 建设单位法人: 赵小骥;
 - (4) 投资情况: 总投资约500万元,环保投资30万元。
 - (5) 用地面积: 6230 平方米。
 - (6) 建筑面积: 3700 平方米。
 - (7) 计划定员: 320人,均不在厂内食宿。
 - (8) 生产制度:每年约生产300天,每天约生产16个小时。
 - (9) 行业类别: C3360 金属表面处理及热处理。
- (10)建设内容:建设 ABS 塑胶自动线 2条,镀银(金)电镀手动线 1条,五金镀镍(铬)仿金电镀线 1条,垂直式五金镀锌自动线 1条。
- (11) 生产能力: ABS 塑料件 7000 万件/a,电镀面积 17.5 万 m^2/a ; 五金(小件) 300 万件/a,电镀面积 6 万 m^2/a ; 五金(大件)240 万件,电镀面积 12 万 m^2/a ; 仿首饰件 6000 件/a,电镀面积 0.6 万 m^2/a 。总电镀面积 36.1 万 m^2/a 。镀种包括铜、镍、仿金、锌、铬、金、银。

3.2.2 原有项目工程组成

根据 2007 年编制的环境影响报告表及批复,原有项目工程组成见下表

工程构成	工程内容	工程规模	污染及风险
	电镀一车间	建筑面积 800m²,建设 ABS 塑胶自动线 1 条	噪声、废气、废水、
		是如此,是实1128 主从目内以15	固废、环境风险
	电镀二车间	 建筑面积 800m²,建设镀银(金)电镀手动线 1 条	噪声、废气、废水、
主体工和		建巩固依 800m , 建议饭饭(壶) 电极于郊线 I 亲	固废、环境风险
主体工程	电镀三车间	建筑面积 800m²,建设五金镀镍(铬)仿金电镀线	噪声、废气、废水、
		1条、喷漆水帘柜1个(配喷枪2把)	固废、环境风险
	电镀四车间	建筑面积 800m², 建设 ABS 自动塑胶线 1 条、垂直	噪声、废气、废水、
		式五金镀锌自动线 1 条	固废、环境风险

表 3.2-1 原有项目工程组成

	剧毒品仓库	建筑面积 50m², 位于电镀二车间	环境风险
	酸仓库	建筑面积 30m², 位于电镀一车间	环境风险
辅助工程	化学品废品 仓	建筑面积 50m², 位于电镀一车间	环境风险
	品管部	建筑面积 50m², 位于电镀一车间	/
公用工程	保卫室	建筑面积 50m²	/
公用工作	供电房	建筑面积 100m²	/
	生产废水处 理	排污 237.5t/d→高平污水处理有限公司	废水、环境风险
环保工程	废气处理	硫酸雾、氯化氢、氮氧化物:碱液喷淋后排放,排气筒高度 15m (共3个排气筒) 氰化物:次氯酸钠、氢氧化钠溶液喷淋后排放,排气筒高度 25m (共1个排气筒) 铬酸雾: 网格式净化回收,焦亚硫酸钠+碱液喷淋后排放,排气筒高 15m (共1个排气筒) 有机废气:收集后采用水喷淋+活性炭吸附处理,排气筒高 15m (共1个排气筒) 热水炉废气:布袋除尘后排放,排气筒高 15m (共1个排气筒)	废气
		粉尘: 水喷淋后引至热水炉废气排气筒排放	
	生活污水处 理	排污 36.9t/d→三角镇生活污水处理厂	废水

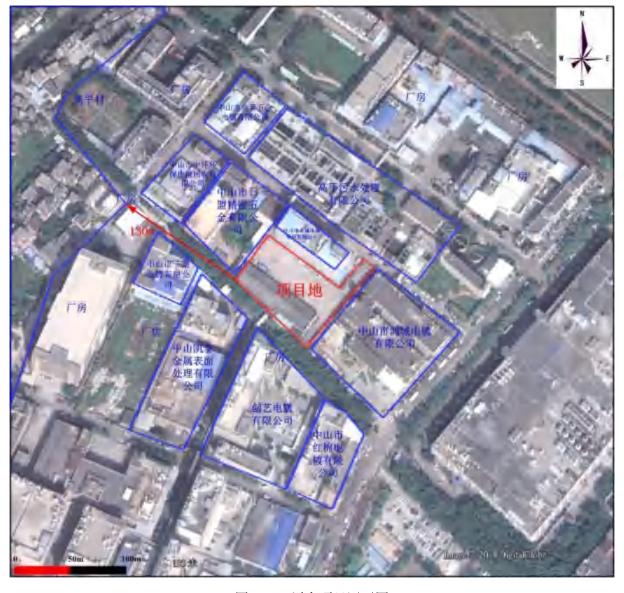


图 3.2-1 原有项目四至图

3.2.3 原有项目原辅材料

项目使用的原材料如下:

表 3.2-2 原有项目原料情况 单位: t/a

原材料	状态	主要成分	年用量	包装方式
除蜡水	液	NaOH、Na ₂ CO ₃ 、Na ₃ PO ₄	4.48 吨	桶装
除油粉	固	NaOH、Na ₂ CO ₃ 、Na ₃ PO ₄	40 吨	袋装
铬酸酐	固	CrO ₃	2.62 吨	桶装
17日次日	凹	CrCl₃·6H ₂ O	4 吨	袋装
硫酸	液	H_2SO_4	46.8 吨	桶装
亲水剂	液	/	0.3 吨	桶装
盐酸	盐酸 液 HCl		36.1 吨	桶装
柠檬酸钠	固	C ₆ H ₅ Na ₃ O ₇	1.35 吨	袋装

次磷酸钠	固	NaH ₂ PO ₂ ·H ₂ O	6.85 吨	袋装
硫酸镍	固	NiSO ₄ ·6H ₂ O	20.1 吨	袋装
氯化镍	固	NiCl ₂ ·6H ₂ O	0.7 吨	袋装
焦磷酸钾	固	K ₄ P ₂ O ₇	11 吨	袋装
焦磷酸铜	固	$Cu_2P_2O_7$	2.5 吨	袋装
硫酸铜	固	CuSO ₄ ·5H ₂ O	17.2 吨	袋装
硼酸	固	H ₃ BO ₃	2.5 吨	袋装
硝酸	液	HNO ₃	1 吨	桶装
镍板	固	Ni	12.9 吨	袋装
氢氧化钾	固	КОН	0.1 吨	箱装
氰化金钾	固	KAu(CN)4	0.04 吨	桶装
氰化钾	固	KCN	0.2 吨	桶装
氰化钠	固	NaCN	0.09 吨	桶装
氰化亚铜	固	Cu ₂ (CN) ₂	2.1 吨	桶装
佬液	固	/	0.2 吨	袋装
防变色剂	液	/	0.4 吨	桶装
仿金板	固	Cu、Zn	0.1 吨	袋装
氧化锌	固	ZnO	0.6 吨	袋装
锌锭	固	Zn	0.5 吨	袋装
油漆	液	树脂 55%、助剂 5%、稀释 45%	5 吨	桶装
成型生物质	固		135 吨	袋装
银板	固	Ag	0.04 吨	袋装
铜板	固	Cu	12 吨	袋装
钯盐	固	(NH ₃) ₄ PdSO ₄	0.6 吨	桶装
稳定剂	液	/	0.2 吨	桶装
氨水	液	NH ₃ ·H ₂ O	5 吨	桶装

3.2.4 原有项目设备情况

原有项目设备情况如下:

表 3.2-3 原有项目设备情况一览表

序号	生产设备	数量
1	ABS 塑胶自动线	2条
2	垂直式五金镀锌自动线	1条
3	五金镀镍(铬)仿金电镀线	1条
4	镀银(金)电镀手动线	1条
5	烘/烤箱(以电能作唯一能源)	7 台
6	水帘柜(1.5m×1.2m×0.5m, 含喷枪 2 把)	1 个
7	喷砂机	1台
8	抛光机	4台
10	压缩空气机	3 台

表 3.2-4 ABS 塑胶自动线设备(1条的设备,母槽)

用途	设备	数量(个)	规格 L/个
	除蜡槽	1	2000
	水洗槽	3	500
	亲水槽	1	500
	粗化槽	2	3000
	回收槽	1	3000
	水洗槽	2	500
	中和槽	1	500
	水洗槽	3	500
	活化槽	1	2000
	水洗槽	3	500
主	解胶槽	1	500
主体工程	水洗槽	3	500
	化学镍槽	2	2000、2500
	水洗槽	5	500
	焦铜槽	1	5000
	水洗槽	2	1200
	酸活化槽	1	1000
	酸铜槽	1	20000
	水洗槽	4	1200
	光镍槽	1	5000
	回收槽	1	5000
	水洗槽	6	1200
	整流器	5	/
	过滤器	10	/
配套工程	冷冻机	1	/
	纯水机	1	/
	烘干炉	1	/

表 3.2-5 镀银(金)电镀手动线(母槽)

用途	设备	数量(个)	规格 L/个
	除蜡槽	4	70、70、80、100
	水洗槽	5	80
	碱铜槽	1	180
主体工程	水洗槽	1	80
土件工性	酸铜槽	2	800
	水洗槽	2	80
	焦铜槽	1	380
	水洗槽	1	80

	镀镍槽	3	400
	回收槽	3	80
	水洗槽	2	40
	镀银槽	2	70
	水洗槽	3	60
	镀金槽	2	45
	水洗槽	2	60、80
	镀铑槽	1	45
	水洗槽	1	80
	整流器	21	/
配套工程	抛光机	4	/
	喷砂机	1	/
	烘干炉	3	/

表 3.2-6 五金镀镍(铬)仿金电镀线(母槽)

用途	设备	数量(个)	规格 L/个
	冷脱除油槽	2	3000
	超声波除油槽	3	1800
	电解除油槽	2	1500、3000
	水洗槽	6	400
	冲击镍槽	1	2000
	回收槽	1	2000
	水洗槽	4	400
	酸电解槽	1	1500
	酸活化槽	3	300、400、500
	水洗槽	3	400
	碱铜槽	2	2500
主体工程	水洗槽	3	400
	酸铜槽	6	2500
	水洗槽	7	400
	光镍槽	1	4000
	哑镍槽	1	2500
	回收槽	2	2500
	水洗槽	3	400、400、1000
	黑镍槽	1	2500
	回收槽	1	2500
	水洗槽	3	400
	镀鉻槽	1	2000
	水洗槽	5	3000

	仿金槽	2	2500
	水洗槽	3	400
	钝化槽	1	1500
	水洗槽	4	400、600、600、600
	切水槽	1	2000
	水洗槽	6	600
	电解退镀槽	1	2500
	水洗槽	1	300
	整流器	3	/
配套工程	过滤机	1	/
	冷冻机	1	/
	烘干炉	1	/

表 3.2-7 垂直式五金镀锌自动线 (母槽)

用途	设备	数量(个)	规格 L/个
	电解除油	1	20000
	碱性电解槽	1	2000
	水洗	1	1000
	酸洗	1	1000
	酸洗	1	4000
	水洗	1	3000
	水洗	1	1000
主体工程	镀锌	1	6000
	镀锌	1	25000
	水洗	1	1000
	水洗	1	1000
	出光	1	1000
	钝化	1	1300
	水洗	3	3000
	封闭槽	1	1000
	整流器	5	/
配套工程	过滤机	3	/
	烘干炉	2	/

3.2.5 原有项目生产工艺流程

正挂→超声波悠油→水洗料→第水→ 租化(1,11) →回收→水洗料→中利→水洗料→活化→水洗料→解胶→水洗料→ 出料→品格→烘干→水洗料→可收→光線→水洗料→酸制→酸活化→水洗料→腹制→水洗料→化学線(1、11) → 图 3.2-2 ABS 塑胶自动线生产工艺 除油 → 电解除油 → 水洗 → 活化 → 水洗 → 镀锌 → 水洗 → 电光 → 钝化 → 水洗 → 封闭 → 烘干 → 品检 → 包装 图 3.2-5 垂 直式 五 金镀锌 自动线牛产工艺

五金工件 → 喷漆 → 固化 → 成品

图 3.2-6 喷漆工艺

工艺介绍:

除油: 以 NaOH、Na2CO3 为主要原料,清除工件表面油脂;

亲水: 采用硫酸、亲水剂等原料处理工件,加强工件表面亲水性能;

粗化:采用铬酸、硫酸等原料处理工件,使工件表面形成微孔,增强镀层结合力;

中和: 采用盐酸、中和剂等原料处理工件,中和工件残留的粗化液;

活化(ABS 塑胶自动线):采用盐酸、金属钯等原料处理工件,使工件表面吸附金属钯,钯起媒介作用;

解胶: 采用解胶盐等原料处理工件,解除工件表面多余的二价锡:

焦铜:采用焦磷酸铜、焦磷酸钾等原料,使工件表面镀上一层薄铜,使工件通电良好:

酸铜: 采用硫酸铜、硫酸等原料, 使工件表面镀上一层较厚的光亮铜;

光镍、镀镍、哑镍:采用硫酸镍、氯化镍、硼酸等原料,使工件表面镀上一层光亮镍,为后工序做底层及抗腐蚀;

回收:将刚出电镀槽的工件在回收槽上停留,使得工件上带出的镀液滴落进入回收槽中,减少工件带出镀液,减轻污水处理的难度;

碱铜:以氰化亚铜、氰化钠等为主要原料,在工件表面上镀上一层薄的铜层,以提高抗腐蚀及结合力;

镀银:用氰化银钾、氰化钾等为主要原料,在镀件上电镀一层加厚有效银金属材料。

镀金: 以氰化金钾、氰化钠为原料镀金;

镀佬:用有机保护剂在工件表面形成一层保护膜,以提高工件的抗蚀性及硬度;

冲击镍:以氯化镍、盐酸为主要原材料,镀一镍打底层,提高镀种金属与工件的结合力:

酸电解:用H₂SO₄对工件表面的氧化皮进行预处理;

酸活化:将被镀零件通过酸溶液侵蚀,使其表面的氧化膜溶解露出活泼的金属界面的过程,用以保证电镀层与基体的结合;

镀铬:属于防护装饰性镀铬,以铬酸盐为主要原料,在镍层上镀一层金属铬,以提高镀层的抗蚀性及硬度;

仿金: 以氰化亚铜、氰化锌, 氰化钠为主要原料, 在工件上镀一层Cu-Zn合金;

钝化: 采用铬酸等原料对工件进行处理, 使工件镀层不易变色;

镀锌: 以氧化锌、锌锭、硫酸等为主要原料在工件上镀一层金属锌;

喷漆:由于Ni-Zn、Cu-Zn镀层易氧化,所以必须在其表面涂覆一层油漆;

固化:以电为能源,在150℃左右高温下使产品表面的漆膜达到所要求的硬度,由于要经受高温,水性油漆难以满足要求,建设单位使用的油漆为耐高温油漆;

退镀:以电解粉作为退镀槽主要成分,使镀层溶解,以获得未电镀的基材;但塑胶件在退镀过程中只能使用硝酸退镀。

3.2.6 原有项目产品方案

项目的产品包括ABS塑料件、五金件、仿首饰件,总电镀面积36.1万m²/a,其中镀铬面积6m²/a,镀种包括镀铜、镍、仿金、锌、铬、金、银等。

产品名称		年产量	产品名称		年产量
厂吅石你	万件	镀层面积(万 m²)		万件	镀层面积(万 m²)
ABS 塑料件	7000	17.5	五金(小件)	300	6
五金(大件)	240	12	仿首饰件	6000	0.6

表 3.2-8 项目产品方案

3.2.7 原有项目公用工程

1、电力配送

项目年使用电 200 万度,由地方电网统一供给。

2、锅炉及供热

项目不设锅炉,热水炉采用生物质做燃料,年耗量135t;不设食堂。

3、给排水工程

生活用排水:项目有员工 320 人,均不在厂内食宿,生活用水量 41t/d,生活污水量 36.9t/d,进入三角镇生活污水处理厂处理,尾水排入洪奇沥水道。

生产用排水:项目用水 270.15t/d,其中自来水 127.65t/d,高平污水处理厂回用水 142.5t/d;项目排水 237.5t/d,进入高平污水处理有限公司处理,尾水排入洪奇沥水道。

3.2.8 原有项目污染源分析

3.2.8.1 废气污染源强分析

(1) 电镀废气

项目电镀过程产生氯化氢0.487t/a、硫酸雾0.168t/a、铬酸雾0.051t/a和氰化氢0.3058t/a、氮氧化物0.0013t/a,建设单位在产生废气的槽上方或侧面安装集气罩或吸气罩,收集的氯化氢、硫酸雾、氮氧化物引至碱液喷淋装置处理后排放,收集率90%、去除率90%,硫酸雾、氯化氢的排气筒共3个;铬酸雾收集经网格式净化回收后采用焦亚硫酸钠+碱液喷淋处理,收集率90%、去除率95%;氰化氢收集后经次氯酸钠+碱液喷淋后排放,收集率90%、去除率95%。氯化氢、硫酸雾、铬酸雾、氰化氢、氮氧化物排放均执行《电镀污染物排放标准》(GB21900-2008)表5新建企业大气污染物排放标准。

	排放方式	污染物	产生量	产生浓度	产生速率	排放量	排放浓度	排放速率
	升从刀工	17条70	t/a	mg/m^3	kg/h	t/a	mg/m ³	kg/h
	排气筒(共3	氯化氢	0.4383	/	0.091	0.0438	/	0.0091
	个) H15m、	硫酸雾	0.1512	/	0.0315	0.0151	/	0.0032
	风量							
 有	$10000 \text{m}^3/\text{h}$	氮氧化物	0.00117	/	0.00025	0.0001	/	0.00003
1 组	D=0.5m							
组织	排气筒							
幼	H15m、风量	 铬酸雾	0.0459	0.66	0.011	0.0023	0.033	0.0005
	16000m ³ /h,	始敗务	0.0439	0.00	0.011	0.0023	0.033	0.0003
	D0.5m							
	排气筒	氰化氢	0.27222	3.98	0.064	0.0028	0.040	0.0006

表 3.2-9 电镀废气产排情况

H25m、风量							
$8000 \text{m}^3/\text{h}$							
D0.5m							
	氯化氢	0.0487	/	0.0101	0.0487	/	0.0101
	硫酸雾	0.0168	/	0.0035	0.0168	/	0.0035
无组织	铬酸雾	0.0051	/	0.001	0.0051	/	0.001
	氰化氢	0.03058	/	0.006	0.03058	/	0.006
	氮氧化物	0.00013	/	0.0003	0.00013	/	0.0003

(2) 喷漆及烘干废气

项目部分镀层易氧化,需要在工件表面进行喷漆处理。喷漆及烘干过程产生 VOCs1.5t/a、二甲苯 0.501t/a、甲苯 0.098t/a,喷漆及烘干废气收集经水喷淋+活性炭吸 附后通过 15m 高排气筒排放,废气收集率 90%、去除率 90%。甲苯、二甲苯排放执行 广东省地方标准《大气污染物排放限值》(DB44/27-2001)第二时段二级标准。

北北十二十	污染物	产生量	产生浓度	产生速率	排放量	排放浓度	排放速率
排放方式	行朱初	t/a	mg/m ³	kg/h	t/a	mg/m^3	kg/h
有组织	VOCs	1.35	500	2.5	0.135	50	0.25
排气筒	二甲苯	0.4509	167	0.835	0.04509	16.7	0.0835
H15m、风							
量	甲苯	0.0882	32.7	0.163	0.00882	3.3	0.0163
$5000 \text{m}^3/\text{h}$	十平	0.0882	32.7	0.103	0.00862	3.3	0.0103
D0.5m							
	VOCs	0.15	/	0.031	0.15	/	0.031
无组织	二甲苯	0.0501	/	0.010	0.0501	/	0.010
	甲苯	0.0098	/	0.002	0.0098	/	0.002

表 3.2-10 喷漆及烘干废气产排情况

(3) 生物质燃烧废气

项目通过燃烧生物质的热量加热生产用水,年用生物质135t,产生SO₂、NOx、烟 尘等废气污染物,废气经布袋除尘后由15m排气筒排放,SO₂、NOx、烟尘排放执行《锅 炉大气污染物排放标准》(DB44/765-2010)燃气锅炉排放限值。

排放方式	污染物	产生量 t/a	产生浓度 mg/m³	排放量 t/a	排放浓度 mg/m³
有组织	SO_2	0.037	41.51	0.037	41.51
排气筒 H15m、风量	NO _x	0.139	155.7	0.139	155.7
$5000 \text{m}^3/\text{h} \cdot \text{D}0.5 \text{m}$	烟尘	1.34	1500	0.027	30

表 3.2-11 生物质燃烧废气产排情况

⁽⁴⁾ 抛光、喷砂粉尘

项目抛光、喷砂过程产生约 1t/a 的颗粒物,颗粒物经收集水喷淋后通过喷漆废气排气筒排放,颗粒物排放执行广东省地方标准《大气污染物排放限值》(DB44/27-2001)第二时段的二级标准。

排放方式	产生量	产生浓	产生速	排放	排放浓度	排放速率
	t/a	度 mg/m³	率 kg/h	量 t/a	mg/m³	kg/h
有组织 排气筒 H15m、风量 5000m³/h、 D0.5m	1	41.6	0.208	0.1	4.16	0.021

表 3.2-12 抛光、喷砂废气产排情况

3.2.8.2 废水污染源强分析

项目产生的废水包括生活污水和生产废水。

(1) 生活污水

项目有员工320人,均不在厂内食宿,生活用水量41t/d,生活污水量36.9t/d,进入三角镇生活污水处理厂处理,尾水达《城镇污水处理厂污染物排放标准》(GB18918-2002)一级B标准后排入洪奇沥水道。

污染物	$\mathrm{COD}_{\mathrm{cr}}$	BOD ₅	SS	NH ₃ -N	动植物油
产生浓度 mg/L	250	150	150	25	25
产生量 t/a	2.77	1.66	1.66	0.28	0.28
排放浓度 mg/L	60	20	20	8	3
排放量 t/a	0.66	0.22	0.22	0.09	0.03

表 3.2-13 生活污水污染物产排情况

(2) 生产废水

项目生产废水包括电镀线废水、电镀废气处理废水、水帘柜更换的废水。

项目水帘柜更换的废水为 9.6t/a,集中收集后委外处理。电镀线产生废水 235.5t/d,电镀废气处理产生废水 2t/d,这些废水共分为前处理废水、综合废水、含氰废水、含铬废水、含镍废水、混排废水等 6 股,分别经专制管道输送至三角镇高平污水处理有限公司处理,尾水达《电镀污染物排放标准》(GB21900-2008)中表 3 特别排放限值后排入洪奇沥水道。各废水产生来源及其产生量如下:

表 3.2-14 生产废水产生情况一览表 单位 t/d

	前处理废水	综合废水	含氰废水	含铬废水	含镍废水	混排废水	合计
电镀线	18.18	105.54	9.36	52.38	43.56	6.48	235.5

电镀废气处理	0	0	0	0	0	2.0	2.0
合计	18.18	105.54	9.36	52.38	43.56	8.48	237.5

3.2.8.3 噪声污染源强分析及治理措施

营运期噪声污染源主要为电镀线、水帘柜、烘/烤箱等设备,其噪声值范围在70-80dB(A)。

 设备
 噪声值 dB (A)

 电镀线
 70

 烘烤箱
 80

 水帘柜
 75

表 3.2-4 生产设备噪声值

建设单位通过合理布局,对烤箱等进行基底减振,加强厂区绿化,合理安排工作时间等措施进行降噪处理。

3.2.8.4 固体废物污染源强分析

项目产生的固体废物包括不合格产品、边角料、一般原材料包装物、危险化学品废包装、电镀槽滤渣、废滤芯、废漆渣、废活性炭、废离子交换树脂、生活垃圾等。

	种类	产生量	处理措施
	边角料	0.3	交废旧物资回收公司处理
	不合格产品	1.5	退镀后回收镀层中重金属和基材
	一般原材料废包装	4.0	
一般固废	喷砂、抛光废渣	0.9	交废旧物资回收公司处理
	废抛光轮	130 个/年	
	燃料灰渣	2.44	交环卫部门处理
	生活垃圾	48	文外上部10处理
	含氰化学品废包装桶(袋)	0.1	
	含镍化学品废包装桶	0.1	
	含铬包装物	0.1	
	酸碱化学品废包装桶 (袋)	2.0	
危险固废	电镀槽滤渣	0.8	交由具有相关危险废物经营许可证的单位处理
	废滤芯	5	
	废漆渣、废活性碳	10	
	电镀废液	120	
	废离子交换树脂	0.5	

表 3.2-5 固体废物产生情况 单位 t/a

|--|--|

3.3技改扩建前项目存在的问题及整改措施

项目于2017年停产同步拆除所有设备及建筑,目前厂区为空地,无原有项目存在问题。

4 技改扩建后项目概况

中山市金美达表面处理有限公司位于中山市三角镇高平化工区,中心坐标: N22°42′32.45″、E113°28′12.52,属于中山市三角高平化工区电镀定点基地范围内,技改扩建后的金美达公司拟设置 25 条电镀生产线及 6 条辅助生产线 (分别为: 8 条连续镀镍金锡自动线、2 条连续镀铜镍金锡自动线、9 条端子连续镀镍钯金锡自动线、1 条挂镀镍铬半自动线、1 条连续镀铜镍银自动线、1 条连续镀镍钯金铑钌自动线、1 条电铸镍半自动线、1 条塑胶挂镀铜镍铬自动线、1 条滚镀铜镍金锡半自动线、1 条连续电泳半自动线、1 条水转印线、1 条 TypeC 滚筒研磨手动线、1 条 C70 滚筒研磨手动线、1 条散件清洗手动线、1 条磁力研磨手动线),工件总电镀面积 119.45 万 m²/a;产生生产废水 237.28t/d。

4.1项目概况

4.1.1 基本情况

- (1) 企业名称:中山市金美达表面处理有限公司。
- (2)项目地点:中山市三角镇高平化工区(中心坐标 N22°42′32.45″、E113°28′12.52)。
- (3) 建设单位法人: 汪应萍
- (4) 投资情况: 8000 万元, 其中环保投资 1000 万元。
- (5) 用地面积: 总用地面积 6924.10m², 建筑面积 15735.06m²。
- (6) 员工规模:项目全厂定员 400 人,均不在厂内食宿。
- (8) 生产制度:每年生产300天,每天生产16小时。
- (9)建设规模: 技改扩建后项目生产线设置为: 25 条电镀生产线 (其中 21 条端子线、1 条塑胶线及 3 条其他五金线)及 6 条辅助生产线 (分别为: 8 条端子连续镀镍金锡自动线、2 条端子连续镀铜镍金锡自动线、9 条端子连续镀镍钯金锡自动线、1 条挂镀镍铬半自动线、1 条端子连续镀银自动线、1 条端子连续镀镍钯金铑钌自动线、1 条电铸镍半自动线、1 条塑胶挂镀铜镍铬自动线、1 条滚镀铜镍金锡半自动线、1 条连续电泳半自动线、1 条水转印线、1 条 TypeC 滚筒研磨手动线、1 条 C70 滚筒研磨手动线、1 条 做力研磨手动线)。

4.1.2 项目组成

项目工程包括主体工程、公用工程、环保工程等。工程内容及规模见表 4.1-1。

表 4.1-1 项目工程组成一览表

工程构成	工程内容	工程规模	备注	
	车间1楼	1 条 TypeC 滚筒研磨手动线、1 条 C70 滚筒研磨手动线	/	
	车间2楼	1条散件清洗手动线、1条磁力研磨手动线、1条滚镀铜镍金锡半自动线、1条水转印线、1条电铸镍半自动线、1条塑胶挂镀铜镍铬自动线、1条挂镀镍铬半自动线	/	
主体工程	车间4楼	6条端子连续镀镍金锡自动线、1条端子连续镀镍钯金 锡自动线	/	
	车间 5 楼	1条端子连续镀铜镍金锡自动线、4条端子连续镀镍钯金锡自动线、2条端子连续镀镍金锡自动线	/	
	车间6楼	4条端子连续镀镍金锡自动线、1条端子连续镀铜镍锡 自动线、1条端子连续镀银自动线	/	
	车间7楼	1条端子连续镀镍钯金铑钌自动线、1条连续电泳半自动线	/	
	易制爆仓	建筑面积 20m², 车间 3 楼	/	
 辅助工程	易制毒品仓	建筑面积 20m², 车间 3 楼	/	
抽助工性	化学药品仓	建筑面积 50m², 车间 3 楼	/	
	金属仓	建筑面积 40m², 车间 3 楼	/	
	供气系统	管道天然气	/	
	供水系统	市政供水	/	
公用工程	纯水制备系 统	设置 2 套纯水制备系统	/	
	供电系统	市政供电	/	
	生产废水处 理	生产废水分为前处理废水、综合废水、含铬废水、电镀镍废水、含氰废水、混排废水、化学镍废水分类由 专制管道排入三角镇高平污水处理有限公司进行处 理。	/	
	生活污水处 理	生活污水进入三角镇生活污水处理厂处理	废水	
环保工程		项目产生的氯化氢、硫酸雾经收集+碱液喷淋塔+50m 排气筒 G1	车间2楼酸性废气	
	座 层 从珊	项目产生的氨气经收集+水喷淋塔+50m 排气筒 G2	车间2楼碱性废气	
	及	废气处理 项目产生的氰化氢经收集+碱性次氯酸钠溶液喷淋塔+50m 排气筒排放 G3		
		项目产生的有机废气经收集+水喷淋塔+活性炭吸附 +50m 排气筒 G4	车间2楼及7楼 有机废气	

	项目产生的铬酸雾经收集+焦亚硫酸钠+碱液喷淋	车间2楼及6楼
	+50m 排气筒排放 G5	含铬废气
	项目产生的氯化氢、硫酸雾经收集+碱液喷淋塔+50m	车间4楼及5楼
	排气筒 G6	酸性废气
	项目产生的氨气经收集+水喷淋塔+50m 排气筒 G7	车间5楼碱性废气
	项目产生的氰化氢经收集+碱性次氯酸钠溶液喷淋塔	车间5楼、6楼
	+50m 排气筒排放 G8	及7楼含氰废气
	项目产生的氯化氢、硫酸雾经收集+碱液喷淋塔+50m	车间6楼及7楼
	排气筒 G9	酸性废气
	项目产生的氨气经收集+水喷淋塔+50m 排气筒 G10	车间6楼及7楼
	一项日广生的氨气经收集+水喷杯培+30m 排气同 G10	碱性废气
	项目天然气燃烧废气经收集+50m 排气筒 G11	锅炉废气
噪声	隔声、减振降噪措施; 合理布局车间高噪声设备	/
固废	生活垃圾交环卫部门处理;一般固体废物收集后交由 一般工业固废处理能力的单位处理;危险废物交由具 有相关危险废物经营许可证的单位处理	/
事故应急池	依托高平污水处理有限公司容积为 2320m³ 的事故应 急池,并与电镀基地高平污水处理有限公司进行事故 应急联动	依托高平污水 处理有限公司

4.1.3 地理位置图、四至图及平面图

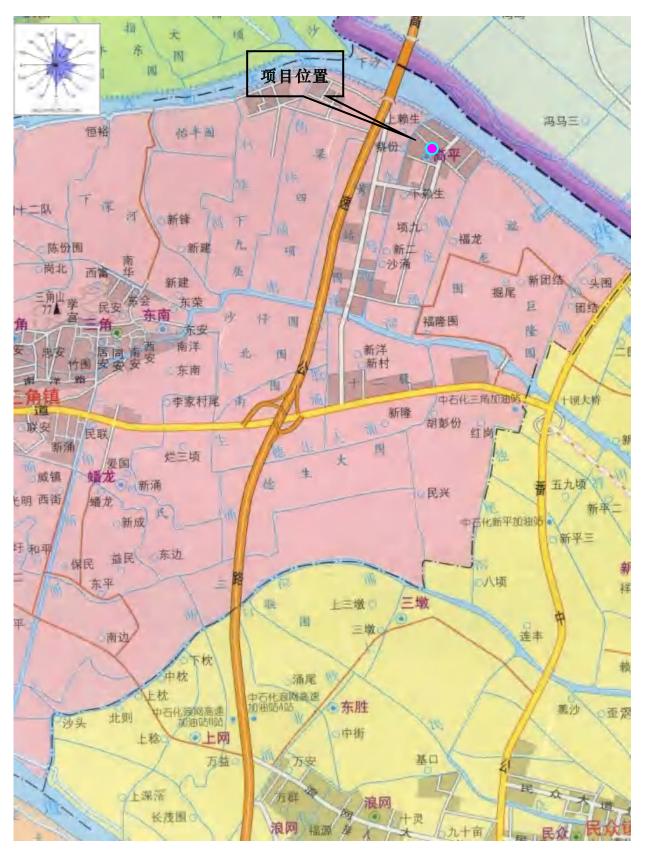


图 4.1-1 建设项目地理位置图

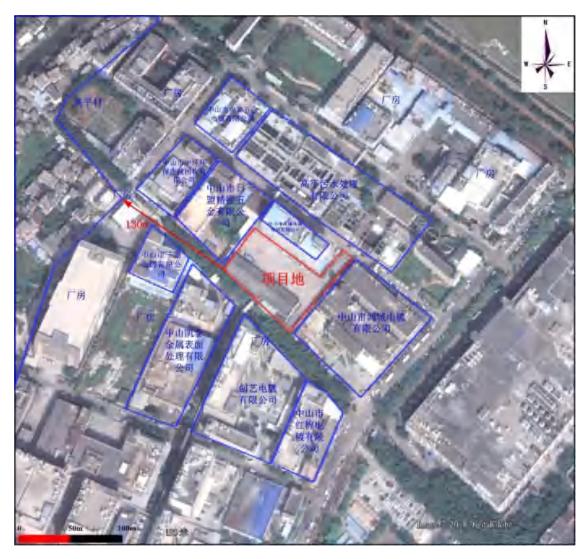


图 4.1-2 建设项目四至图

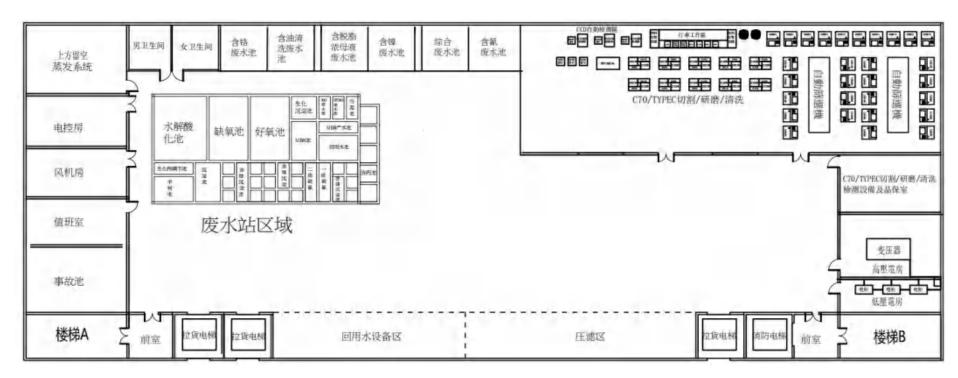
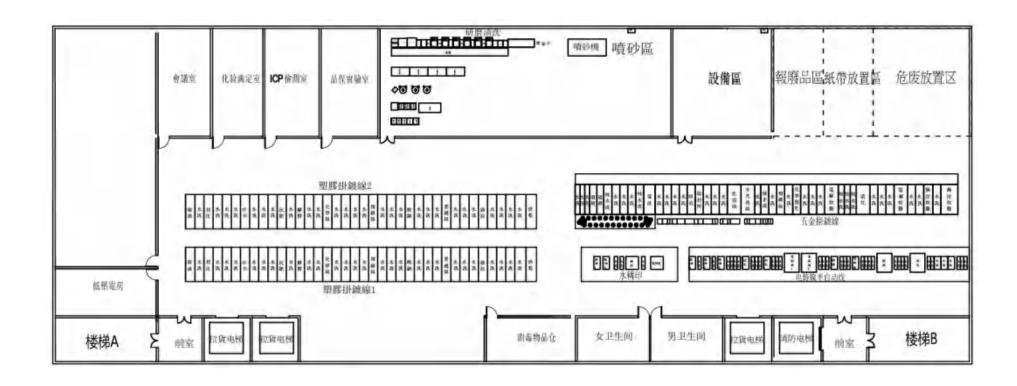
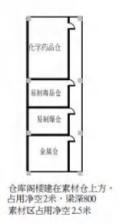
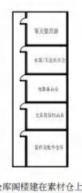
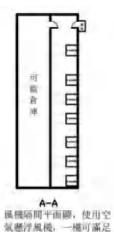
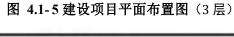


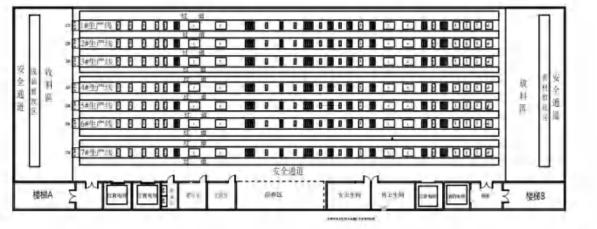
图 4.1-3 建设项目平面布置图 (1层)




图 4.1-4 建设项目平面布置图 (2层)





仓库阁楼建在素材仓上方, 占用净空2米,梁深800 素材区占用净空2.5米

兩條線的使用湍求。

度水或改革 1 燃烧机 A-C 阀楼建在收料区上方 占用净空2米

- 放料区占用净空3米2

图 4.1-6 建设项目平面布置图 (4-7层)

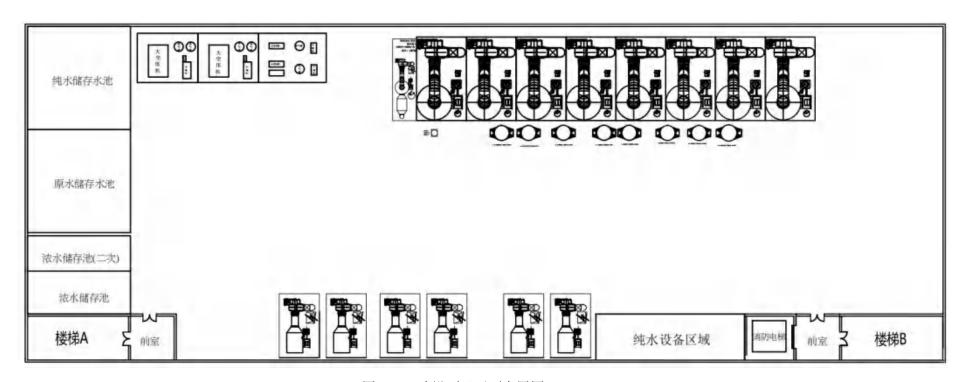


图 4.1-7 建设项目平面布置图(楼顶)

4.1.4 原辅材料

4.1.4.1 主要原辅材料使用情况

技改扩建后项目原辅材料使用情况如下:

表 4.1-2 项目各生产线原辅材料使用情况(1)

34 IX.	
单位:	t/a

	1		1		1	1		1			1		1	1	1	
原材料	1#连续 镀镍金	2#端子连 续镀镍金	3#端子连续镀镍金	4#端子连 续镀镍金	5#端子连续镀镍金	6#端子连续 镀铜镍金锡	7#端子连 续镀镍金	8#端子连续 镀镍钯金锡	9#端子连续 镀镍钯金锡	10#端子连 续镀镍钯金	11#端子连 续镀镍钯金	12#端子连 续镀镍钯金	13#端子连 续镀镍钯金	14#端子连 续镀镍钯金	15#端子连 续镀镍钯金	16#端子连 续镀镍钯金
名称	锡自动 线	锡自动线	锡自动线	锡自动线	锡自动线	自动线	锡自动线	自动线	自动线	锡自动线	锡自动线	锡自动线	锡自动线	锡自动线	锡自动线	锡自动线
碱性除 油剂	4.00	4.00	4.00	4.00	4.00	1.07	4.00	1.64	1.64	1.64	1.64	1.64	1.64	1.64	1.64	1.64
酸盐	2.50	2.50	2.50	2.50	2.50	0.67	2.50	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03
氨基磺 酸镍	3.40	3.40	3.40	3.40	3.40	0.91	3.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40
氯化镍	1.05	1.05	1.05	1.05	1.05	0.29	1.05	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43
镍角	4.19	4.19	4.19	4.19	4.19	1.16	4.19	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73
硼酸	2.60	2.60	2.60	2.60	2.60	0.71	2.60	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07
氰化金 钾	0.10	0.10	0.10	0.10	0.10	0.03	0.10	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
甲基磺 酸锡	1.23	1.23	1.23	1.23	1.23	0.33	1.23	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
锡球	2.69	2.69	2.69	2.69	2.69	0.72	2.69	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10
硫酸铜						0.13										
硫酸						1.75										
磷铜球						0.10										
硫酸四								0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
氨钯								0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
氨水								0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
盐酸						1.55		0.73	0.73	0.73	0.73	0.83	0.83	0.83	0.73	0.73

表 4.1-3 项目各生产线原辅材料使用情况(2)

单位: t/a

原材料名称	17#端 子连续 镀镍锡 自动线	18#端 子连续 镀镍锡 自动线	19#连续镀铜镍 锡金半自动线	20#挂镀 镍铬半 自动线	21#端子连 续镀银自 动线	22#端子连 续镀镍钯金 铑钌自动线	23#电 铸镍半 自动线	24#塑胶挂 镀铜镍铬自 动线	25#滚镀铜 镍金锡半 自动线	连续电泳半自动线	水转印线	TypeC 滚筒 研磨手动 线	C70 滚筒 研磨手动 线	散件清 洗手动 线	磁力研 磨手动 线
碱性除油 剂	8.00	6.32	6.32	10.00	9.45	3.52	0.91	16.36	9.09	0.76	0.34				
酸盐					2.36	0.93									
氨基磺酸 镍	2.69	2.69	2.44		0.88	1.38	9.14		0.61						
氯化镍	0.90	0.90	0.90	0.63	0.30	0.47	3.12	1.50	0.23						
镍角	3.55	3.55	3.25	2.27	1.08	1.70	11.28	5.41	0.84						

硫酸镍				3.18				10.42							
硼酸	2.14	2.14	1.98	1.82	0.68	1.07	7.06	5.76	0.51						
氰化金钾						0.39			0.03						
甲基磺酸															
锡	1.61	1.61	0.81						0.28						
锡球	3.54	3.54	1.77						0.61						
硫酸铜			1.56		0.93		0.02	10.05							
硫酸			1.46		6.35		7.19	8.09							
磷铜球			1.20		0.72		0.02	7.77							
硫酸四氨						1.02		0.00							
钯						1.82		0.00							
氨水						0.50		4.14							
三氯化铬	0.00	0.00	0.00	0.00											
盐酸	6.00	6.00	3.86	20.11			3.73	3.57	2.98						
铬酐				1.31			0.07	0.62							
氰化亚铜					0.15				0.16						
氰化钠					1.12				1.17						
铜粒					0.85				0.89						
氰化银					1.81										
氰化钾					0.91										
银板					2.48										
脱银剂				5.00											
银保护剂				5.00											
钌铑药水						0.10									
电泳漆										1.46					
转印膜											9000.00				
活化剂											0.48				
水性漆											23.21				
高锰酸钾								2.00							
钯水								1.38							
次磷酸钠								1.27							
石子												3.00	3.00		
研磨剂												5.00	5.00		8.00
解胶水								3.4							
酸性除油												10	10	12.5	15
剂												10	10	12.3	13
锡保护剂	5	5													
硫酸铬钾								1.30							

柠檬酸钠				1.27			
焦亚硫酸				2.4			
钠				3.4			
氯化钯				1.13			
氯化亚锡				0.26			

表 4.1-4 项目原辅材料使用情况(汇总)

序号	原材料	年用量 (t/a)	最大存 在总量 (t/a)	性状	主要成分	纯度	包装方式	存储位置
1	碱性除 油剂	133.59	10	液态	/	/	/	仓库
2	酸盐	28.19	2	固态	/	/		仓库
3	氨基磺 酸镍	54.94	1	固态	氨基磺酸镍	99%	250g/袋	仓库
4	氯化镍	22.7	0.5	固态	氯化镍	99%	500g/桶	剧毒品
5	镍角	86.45	1	固态	镍	/	250kg/ 桶	仓库
6	硫酸镍	30.97	0.5	固态	硫酸镍	镍 22.2%, 钴 0.05%	25g/瓶	剧毒品 仓
7	硼酸	59.64	2	固态	氧化硼	99.50%	2mg/瓶	剧毒品 仓
8	氰化金 钾	1.47	0.1	固态	金	含金 53.6%	/	剧毒品 仓
9	甲基磺 酸锡	18.14	1	液态	甲基磺酸锡	50%	250kg/ 桶	仓库
10	锡球	39.74	2	固态	锡	含锡 99.999%	25g/袋	仓库
11	硫酸铜	24.3	1	固态	硫酸铜	98%	250g/袋	仓库
12	硫酸	35.05	1	液态	H ₂ SO ₄	10%		仓库
13	磷铜球	18.78	0.5	固态	青铜、磷	铜 92%	/	仓库
14	硫酸四 氨钯	2.73	0.2	固态	钯	37.40%	5g/袋	仓库
15	氨水	17.61	0.5	液体	NH3·H2O	28%	500ml/ 桶	仓库
16	盐酸	64.67	2	液态	HC1	36%盐酸		仓库
17	铬酐	2.62	0.1	固态	CrO3	CrO3	250g/袋	仓库
18	氰化亚 铜	0.31	0.015	固态	氰化亚铜	99%	300g/袋	仓库
19	氰化钠	2.29	0.1	固态	NaCN	NaCN	/	剧毒品 仓库
20	铜粒	1.74	0.1	固态	Cu	Cu	500g/桶	仓库
21	氰化银	1.81	0.1	固态	AgCN	AgCN	500g/袋	仓库
22	氰化钾	0.91	0.1	固态	氰化钾			仓库
23	银板	2.48	0.2	固态	银	99.95%	250m	仓库
24	脱银剂	5	0.2	固态				仓库

25	银保护	5	0.2	液态	/	/	/	仓库
26	钌铑药 水	0.1	0.01	液态	/	/	/	仓库
27	电泳漆	1.46	0.2	固态	/	/	/	仓库
28	转印膜	9000	500	固态	/	/	/	仓库
29	活化剂	0.48	0.05	液态	/	/	/	仓库
30	水性漆	23.21	1	液态	/	/	/	仓库
31	高锰酸 钾	4	0.2	固态	KMnO4	KMnO4	/	仓库
32	钯水	2.76	0.1	液态	PdC12	PdC12	/	仓库
33	次磷酸 钠	2.55	0.1	固态	NaH ₂ PO ₂	NaH ₂ PO ₂	/	仓库
34	石子	6	0.5	固态	/	/		仓库
35	研磨剂	18	1	液态、膏 状、固体	/	/	/	仓库
36	解胶水	6.8	0.4	液态	/	/	/	仓库
37	酸性除 油剂	47.5	3	液态				仓库
38	锡保护 剂	15	0.5	液态	/			仓库
39	硫酸铬 钾	2.59	0.1	固态	CrH5KO5S	CrH5KO5S	500g/袋	仓库
40	柠檬酸 钠	2.55	0.1	固态	柠檬酸钠	柠檬酸钠	1kg/袋	仓库
41	焦亚硫 酸钠	6.8	0.25	固态	焦亚硫酸钠	焦亚硫酸钠	2.5kg/袋	仓库
42	氯化钯	2.27	0.1	固态	氯化钯	99.90%	5g/袋	仓库
43	氯化亚 锡	0.51	0.02	固态	氯化亚锡	氯化亚锡	5g/袋	仓库
44	电解退 镀粉	15	0.5	固态	/	/	/	仓库

主要原辅材料化学性质

(一) 氰化亚铜

	M LOTIC NA								
CAS 号			544-92-3						
中文名称		氰化亚铜							
英文名称		COPPI	ER(I) CYANIDE						
别名		氰化铜,CUPROUS CYANIDE							
分子式	CuCN	外观与性 状	白色单斜结晶粉末或淡绿色粉末						
分子量	89.56	蒸汽压	/						
熔点	474℃	溶解性	不溶于水、稀酸,易溶于浓盐酸。易溶于氨水、铵盐溶液。溶于氰化钠、氰化铵、氰化钾时生成氰铜络合物。						
密度	$2.92 \mathrm{g/cm^3}$	稳定性	稳定						
危险标记	A 级无机剧毒品	主要用途	主要用于电镀铜及其它合金,合成抗结核药及防污涂料。						

急性毒性:大鼠经口 LD50:1265mg/kg,除致死剂量外无详细说明;慢性中毒会出现头痛、消瘦,最高容许浓度为 0.5mg/m³。剧毒。

危险性:不燃。受高热或与酸接触会产生剧毒的氰化物气体。与硝酸盐、亚硝酸盐、 氯酸盐反应剧烈,有发生爆炸的危险。遇酸或露置空气中能吸收水分和二氧化碳分解出 剧毒的氰化氢气体。

危害性:吸入后引起紫绀、头痛、头晕、恶心、呕吐、虚弱、惊厥、昏迷、咳嗽、呼吸困难。对呼吸道有强烈刺激性,可引起肺水肿而致死。对皮肤、眼有强烈刺激性,可致灼伤。口服出现紫绀、头痛、头晕、恶心、呕吐、虚弱、昏迷、呼吸困难、血压下降等;刺激口腔和消化道或造成灼伤。

(二) 氰化银钾

\— / FI									
CAS 号		506-61-6							
中文名称	氰化银钾								
英文名称		Potassium di	cyanoargentate						
别 名	Silver potassium o	cyanide,银氰	化钾; 氰银酸钾; 二氰合银酸钾						
分子式	K[Ag(CN)2]	外观与性	白色晶体						
7/17/	K[Ag(CN)2]	状	口口田仲						
分子量	198.99	蒸汽压	740 mmHg at 25°C						
熔点	沸点: 25.7 °C at 760	溶解性							
冷 点	mmHg		俗] 小,						
密度	$2.36 \mathrm{g/cm^3}$	稳定性	稳定						
危险标记	A 级无机剧毒品	主要用途	用于提炼银、镀银						

急性毒性: LD50: 无资料, LC50: 无资料。剧毒。

危险性:不燃。受高热或与酸接触会产生剧毒的氰化物气体。与硝酸盐、亚硝酸盐、 氯酸盐反应剧烈,有发生爆炸的危险。遇酸或露置空气中能吸收水分和二氧化碳分解出 剧毒的氰化氢气体。

危害性:吸入后引起紫绀、头痛、头晕、恶心、呕吐、虚弱、惊厥、昏迷、咳嗽、呼吸困难。对呼吸道有强烈刺激性,可引起肺水肿而致死。对皮肤、眼有强烈刺激性,可致灼伤。口服出现紫绀、头痛、头晕、恶心、呕吐、虚弱、昏迷、呼吸困难、血压下降等;刺激口腔和消化道或造成灼伤。

(三)氰化亚金钾

CAS 号	13967-50-5						
中文名称	氰化亚金钾	氰化亚金钾					
英文名称	Potassium Aurocyanide	Gold Potassiu	m Cyanide				
别名	氰亚金酸钾						
分子式	K[Au(CN) ₂]	外观与 性状	白色结晶				
分子量	288.1	蒸汽压	/				
熔点	200℃	溶解性	溶于水, 微溶于乙醇, 不溶于乙醚				
密度	3.45 g/cm ³	稳定性	较活泼, 易与酸反应				
危险标记	A 级无机剧毒品	主要用途	电镀金原料				

急性毒性: LD50:50mg/kg(大鼠经口), LC50: 无资料, 剧毒。

危险性:不易燃烧,燃烧释放出其他氰化氢;与酸作用,甚至很弱的酸亦能与之反应而析出黄色氰化亚金放出氰化氢气体。铁、锌、镍、铜、铝等金属溶解于氰化亚金钾水溶液,还原出单质金,水溶液长时间放置,氰根在氧参与下,会发生分解反应使氰化亚金钾溶液变红。

危害性:呼吸道吸入,通过皮肤、消化道吸收引起中毒;接触或误食氰化物后,感到咽喉紧缩感、口腔麻木、流涎、剧烈头痛、继而胸闷、心悸、呼吸困难甚至死亡等症状。

(四)氰化钾

CAS 号	151-50-8		
中文名称	氰化钾		
英文名称	Potassium cyanide		
别 名	cyanide of potassium; cyanure de potassium; potassium cyanide		
分子式	KCN	外观与性 状	白色结晶或粉末,易潮解,有氰化氢气味
分子量	65.12	蒸汽压	/

熔点	634.5℃ 沸点: 1497℃	溶解性	易溶于水、乙醇、甘油,微溶于甲醇、氢氧 化钠水溶液
密度	1.52g/cm ³	稳定性	稳定
危险标记	A 级无机剧毒品	主要用途	用于提炼金、银等贵重金属和淬火,并用于 塑料、农药、医药、染料等有机合成业

急性毒性: LD50: 506.4 mg/kg(大鼠经口), LC50: 无资料。剧毒。

危险性:不燃。受高热或与酸接触会产生剧毒的氰化物气体。与硝酸盐、亚硝酸盐、 氯酸盐反应剧烈,有发生爆炸的危险。遇酸或露置空气中能吸收水分和二氧化碳,分解 出剧毒的氰化氢氧化。水溶液为碱性腐蚀液体。燃烧(分解)产物:氰化氢、氧化氮。

危害性:抑制呼吸酶,造成细胞内窒息。吸入、口服或经皮吸收均可引起急性中毒。 口服 50~100mg 即可引起猝死。非骤死者临床分为 4 期:前驱期有粘膜刺激、呼吸加快加深、乏力、头痛,口服有舌尖、口腔发麻等;呼吸困难期有呼吸困难、血压升高、皮肤粘膜呈鲜红色等;惊厥期出现抽搐、昏迷、呼吸衰竭;麻痹期全身肌肉松弛,呼吸心跳停止而死亡。长期接触少量氰化物出现神经衰弱综合征、眼及上呼吸道刺激。可引起皮疹。

(五) 氯化镍

	······		
CAS 号	7791-20-0		
中文名称	氯化镍		
英文名称	nickel chloride hexahydrate		
别 名	六水合氯化镍;Nickel(II) chloride hexahydrate		
分子式	Cl ₂ H ₁₂ NiO ₆	外观与性	绿色结晶性粉末
		状	
分子量	237.73	蒸汽压	/
熔点	125℃	溶解性	溶于乙醇、水和氢氧化铵,其水溶液呈酸性,
			pH 约 4
密 度	1.921 g/cm^3	稳定性	在常温常压下,稳定
危险标记	/	主要用途	用于镀镍和做氨吸收剂、催化剂

急性毒性: 大鼠口径 LD50: 175mg/kg。

危险性: 危害水环境。

危害性:接触者可发生接触性皮炎或过敏性湿疹。吸入本品粉尘,可发生支气管炎或支气管肺炎、过敏性肺炎,并可并发肾上腺皮质功能不全。镍化合物属致癌物。

(六) 镍阳极

镍阳极是电镀中重要材料,在镀镍及镍基合金工艺中,对镍阳极性能的要求是:1、w(Ni)应大于99.9%;2、具有良好的导电性能;3、在电沉积过程中,有宽泛的阳极电

流密度范围; 4、溶解均匀,生成的泥渣尽量少。在镀镍中比较适宜的镍阳极有以下几种:1、含碳镍阳极; 2.含氧镍阳极; 3、含硫镍阳极。商品以含碳镍阳极为主,含碳镍阳极主要由 98.7%~99.5%镍、0.25%~0.30%碳和 0.25%~1.00% 硅组成,溶解性能优良,允许使用的阳极电流密度宽泛,并有稳定电解液 pH 的作用。

(七) 氨基磺酸镍

CAS 号	13770-89-3		
中文名称	氨基磺酸镍		
英文名称	Nickel Sulfamate		
别 名	氨基磺酸镍(II)水合物; nickel bis(sulphamidate)		
分子式	Ni (SO ₃ NH ₂) ₂ ·4H ₂ O	外观与性 状	绿色至带蓝色的晶体
分子量	322.92	蒸汽压	/
熔点	125℃	溶解性	可溶于水,不溶于酮,难溶于乙醇
密度	1.913g/cm3	稳定性	不稳定
危险标记	/	主要用途	主要用于电镀工业

急性毒性: LC50 (96 小时): 2~50ppm。

危险性: 高温会产生硫酸镍铵分解物。

危害性: 刺激喉咙、眼睛和鼻子,皮肤接触可引起皮炎和湿疹,常伴有剧烈瘙痒, 大量口服引起恶心、呕吐和眩晕。

(八)银板

银板主要由白银组成,呈灰、红色。熔点 961.93℃,沸点 2212℃,密度 10.5 克/立方厘米 20℃。银质软,有良好的柔韧性和延展性,延展性仅次于金,能压成薄片,拉成细丝。溶于硝酸、硫酸中。银对光的反射性达到 91%。常温下,卤素能与银缓慢地化合,生成卤化银。银不与稀硫酸和碱发生反应,但能与氧化性较强的酸浓硝酸产生化学反应。

(九)锡球

锡球又称锡粉、金属锡、锡、锡箔、锡丸。锡球是新型封装中不可缺少的重要材料. 它是满足电气互连以及机械互连要求的一种新型的连接方式,锡是一种有银白色金属光泽的低熔点金属,纯锡相对原子质量 118.71,熔点: 231.89℃,沸点: 2260℃,密度: 7.28g/cm³,常温下展性好,化学性质稳定,不易被氧化,常保持银闪闪的光泽。金属锡即使大量也是无毒的,简单的锡化合物和锡盐的毒性相当低,但一些有机锡化物的毒性非常高,尤其锡的三烃基化合物被用作船的漆来杀死附在船身上的微生物和贝壳。这些

化合物可以摧毀含硫的蛋白质。目前锡主要用于制造焊锡、镀锡板、合金、化工制品等, 产品被广泛应用于电子、信息、电器、化工、冶金、建材、食品包装、机械、原子能及 航天工业等行业。

(十) 锡酸钠

CAS 号	12058-66-1			
中文名称		锡酸钠		
英文名称		S	Sodium stannate	
别名		水合锡西	夋钠; Sodium tin oxide	
分子式	Na ₂ O ₃ Sn 外观与性 白色至灰白色粉末			
分子量	212.688	蒸汽压	/	
熔点	140°C 溶解性 溶于水,不溶于醇和丙酮			
密 度	1.913g/cm3	稳定性	加热至 140℃时失去结晶水而成无水物。在空 气中吸收二氧化碳而成碳酸钠和氢氧化锡	
危险标记	/	主要用途	主要用于电镀工业	

急性毒性: 大鼠口服 LD50: 3457mg/kg。

危险性:通常对水体是稍微有害的。

危害性:对喉咙、眼睛、鼻子、皮肤有刺激作用。吸入后引起头痛、头晕、恶心、呕吐、呼吸困难。

(十一) 硫酸亚锡

CAS 号	7488-55-3			
中文名称		硫酸亚锡		
英文名称		St	annous sulfate	
别 名	硫酸锡(II); Tin Sulfate			
分子式	O ₄ SSn	外观与性 状	白色晶体	
分子量	312.853 蒸汽压 /			
熔点	360 °C 溶解性 溶于水,溶于稀硫酸			
密度	4.15 g/cm ³ 稳定性 稳定			
危险标记	/	主要用途	主要用于电镀工业	

急性毒性: 大鼠口服 LD50: 2207 mg/kg。

危害性:对水体是稍微有害的。

危险性:吸入有害,可引起呼吸道刺激;食入吞咽有害,通过皮肤吸收有害,可引起皮肤刺激。对有眼睛造成严重眼刺激。怀疑对胎儿造成伤害,一次性吸入可能造成呼吸道刺激。长期或反复接触可能损害器官。

(十二) 锡酸钾

CAS 号	12142-33-5		
中文名称	锡酸钾		
英文名称	Potassium stannate		
别 名	硫酸锡(II); d	ipotassium bis	(oxidanidyl)-oxidanylidene-tin trihydrate
分子式	K ₂ SnO ₃ ·3H ₂ O	外观与性 状	白色至灰白色粉末
分子量	244.896	蒸汽压	/
熔点	140 °C	溶解性	易溶于水,呈碱性,不溶于醇和丙酮
密度	3.197 g/cm^3	稳定性	不稳定
危险标记	/	主要用途	用于锡酸钾镀锡,还用于玻璃、陶瓷、印染等 工业

危险性:对水体是稍微有害的。

危害性:锡酸钾粉尘对人体有害。长期吸入含锡粉尘,呈现肺尘埃沉着病症状。生产和使用该产品的现场人员接触吸尘浓度为 10~15mg/m³时,都会患有慢性支气管炎,呈现有肺气肿的初期症状或呈中度呼吸机能不全等。

(十三) 盐酸

<u> </u>				
国标编号	81013			
CAS 号	7647-01-0			
中文名称		盐	 酸	
英文名称	I	Hydrochloric acid;	Chlorohydric acid	
别 名		氢氯	〔酸	
分子式	HCl	外观与性状	无色或微黄色发烟液体,有刺鼻的酸 味	
分子量	36.46	蒸汽压	30.66kPa (21℃)	
熔点	-114.8℃/纯 沸点: 108.6℃/20%	溶解性	与水混溶,溶于碱液	
密 度	相对密度(水=1) 1.20; 相对密度(空气=1) 1.26	稳定性	稳定	
危险标记	20 (酸性腐蚀品)	主要用途	重要的无机化工原料,广泛用于染料、医药、食品、印染、皮革、冶金 等行业	

急性毒性: LD50: 900mg/kg(大鼠经口); LC50: 3124ppm(大鼠吸入,1h),中等毒性。 危险性: 不燃。具强腐蚀性、强刺激性,可致人体灼伤。能与一些活性金属粉末发 生反应,放出氢气。与碱发生中和反应,并放出大量的热。具有强腐蚀性。燃烧(分解) 产物:氯化氢。 危害性:接触其蒸气或烟雾,可引起急性中毒:出现眼结膜炎,鼻及口腔粘膜有烧灼感,鼻出血、齿龈出血,气管炎等。误服可引起消化道灼伤、溃疡形成,有可能引起胃穿孔、腹膜炎等。眼和皮肤接触可致灼伤。长期接触,引起慢性鼻炎、慢性支气管炎、牙齿酸蚀症及皮肤损害。对环境有危害,对水体和土壤可造成污染。

(十四) 脱脂剂

脱脂剂主要由氢氧化钠组成,采用多种优质表面活性剂、去污剂、渗透剂、助洗剂等精制而成的碱性脱脂剂,主要用于脱除物体表面油污,白色粉状物,有刺激性气味,相对密度 1.0,可溶于水,性质稳定,耐热性好,可长期保存,具有良好的润湿,增溶和乳化等能力,有较强的去油能力。在金属加工等工业领域都有广泛的用途。

(十五) 硫酸

<u></u>	rylli FLX		
CAS 号	7664-93-9		
中文名称		矿	荒 酸
英文名称		Sulfu	ric acid
别 名		磺	镪水
分子式	$\mathrm{H}_2\mathrm{SO}_4$	外观与性 状	纯品为无色透明油状液体, 无臭
分子量	98.08	蒸汽压	0.13kPa (145.8℃)
熔点	10.5℃ 沸点: 330.0℃	溶解性	与水混溶
密度	相对密度(水=1)1.83; 相对密度(空气=1)3.4	稳定性	稳定
危险标记	20 (酸性腐蚀品)	主要用途	用于生产化学肥料,在化工、医药、塑料、染料、石油提炼等工业也有广泛的 应用

急性毒性: LD50: 2140mg/kg(大鼠经口); LC50: 510mg/m³(大鼠吸入, 2h); 320mg/m³, (小鼠吸入, 2h)。中等毒性。

危险性:不燃。但当与金属发生反应后会释出易燃的氢气,有机会导致爆炸,而作为强氧化剂的浓硫酸与金属进行氧化还原反应时会释出有毒的二氧化硫,威胁工作人员的健康。

危害性:长时间暴露在带有硫酸成分的浮质中(特别是高浓度),会使呼吸管道受到 严重的刺激,更可导致肺水肿。但风险会因暴露时间的缩短而减少。

(十六) 硼酸

CAS 号	10043-35-3
中文名称	硼酸
英文名称	Orthoboric acid

别名	boric		
分子式	H ₃ BO ₃	外观与性状	无色或白色无臭结晶固体
分子量	61.833	蒸汽压	2.6 mmHg (20 °C)
熔点	169 °C 沸点:300 ℃	溶解性	溶于水、酒精、甘油、醚类及香精油中
密 度	相对密度(水=1)1.83; 相对密度(空气=1)3.4	稳定性	稳定
危险标记	/	主要用途	用于玻璃、搪瓷、医药、化妆品等工业, 以及制备硼和硼酸盐,并用作食物防 腐剂和消毒剂等。

急性毒性: LD50: 5.14g/kg(大鼠经口)。

危险性:对水体是稍微有害的。

危害性:工业生产中,仅见引起皮肤刺激、结膜炎、支气管炎,一般无中毒发生。 口服引起急性中毒,主要表现为胃肠道症状,有恶心、呕吐、腹痛、腹泻等,继之发生 脱水、休克、昏迷或急性肾功能衰竭,可有高热、肝肾损害和惊厥,重者可致死。皮肤 出现广泛鲜红色疹,重者成剥脱性皮炎。本品易被损伤皮肤吸收引起中毒。慢性中毒: 长期由胃肠道或皮肤吸收小量该品,可发生轻度消化道症状、皮炎、秃发以及肝肾损害。

(十七) 柠檬酸

	11 WHX		
CAS 号	99026-99-0		
中文名称			柠檬酸
英文名称			Citric Acid
别 名	枸	橼酸; 3-hydrox	y-3-carboxy-pentanedioic acid
分子式	C ₆ H ₈ O ₇	外观与性状	白色半透明晶体或粉末
分子量	192.124	蒸汽压	0.0±1.5 mmHg
熔点	153-159 °C	溶解性	易溶于水和乙醇,溶于乙醚,不溶于苯,微溶于 氯仿
密度	1.665g/mL 稳定性 /		/
危险标记	/	主要用途	用于香料或作为饮料的酸化剂,在食品和医学 上用作多价螯合剂,也是化学中间体

急性毒性: LD50: 3 mg/kg(大鼠经口)。

危险性: 柠檬酸可燃。粉体与空气可形成爆炸性混合物,遇明火、高热或与氧化剂接触,有引起燃烧爆炸的危险。

危害性: 柠檬酸浓溶液对黏膜有刺激作用,长期食用会影响儿童脑部发育。在工业使用中,接触者可能引起湿疹。

(十八) 氨基磺酸

<u> </u>	XIZNIK
CAS 号	5329-14-6
中文名称	氨基磺酸

英文名称	Sulfamic acid		
别 名		氨磺酸	; midosulfonic acid
分子式	SO ₃ NH ₃	外观与性状	白色结晶固体
分子量	97.09	蒸汽压	
熔点	205℃	溶解性	溶于水、液氨,微溶于乙醇和甲醇,微溶于 丙酮不溶于醚。不溶于有机溶剂。易溶于含 氮碱液和液氮;也可溶于含氮的有机试剂如 吡啶等;难溶于乙醇和甲醇。在水中能中等 程度溶解,与常见非极性溶剂如 THF 或甲 苯等很难混合
密 度	$2.13\mathrm{g/cm^3}$	稳定性	稳定
危险标记	/	主要用途	用于香料或作为饮料的酸化剂,在食品和医学 上用作多价螯合剂,也是化学中间体

急性毒性: LD50: 3160mg/kg(大鼠经口); 1312mg/kg(小鼠经口)。

危险性: 受热分解, 放出氮、硫的氧化物等毒性气体。

危害性:吸入本品对上呼吸道有刺激性。皮肤或眼接触有强烈刺激性或造成灼伤。 口服灼伤口腔和消化道。

(十九)磷酸三钠

	FX114			
CAS 号	7601-54-9			
中文名称		磷酸三钠		
英文名称			amido-Sulfonic	
别 名		无水磷酸钠	; Three sodium phosphate	
分子式	H ₂₄ Na ₃ O ₁₆ P	外观与性状	白色结晶粉末	
分子量	164.26	蒸汽压	/	
熔点	1340℃	溶解性	溶于水,其水溶液呈强碱性;不溶于乙醇、二硫 化碳。	
密度	1.62g/cm ³	稳定性	/	
危险标记	/	主要用途	治金工业用作化学去油、去污,用作照相显影 溶液中的优良促进剂	

急性毒性:最小致死量(大鼠,静脉)1580mg/kg,土拨鼠经口LD50:大于2g/mg。

危险性: 该物质对环境可能有危害, 对水体应给予特别注意

危害性:严重损害粘膜、上呼吸道、眼睛和皮肤。吸入后可引起喉和支气管发生痉挛、炎症和水肿等症状,从而使其因化学性肺炎或肺水肿而致死。接触后引起烧灼感、咳嗽、喘息、喉炎、气短、头痛、恶心和呕吐。

(二十) 研磨剂

研磨剂是指用磨料、分散剂(又称研磨液)和辅助材料制成的混合剂,主要用于研磨和抛光,使用时磨粒呈自由状态,研磨剂中含有细小的颗粒,可以去除深度氧化层和轻微划痕及喷漆时出现的麻点和垂流漆面。

(二十一) 氯化铟

•				
CAS 号	10025-82-8			
中文名称		氯化铟		
英文名称			Indium chloride	
别 名		三氯	化铟; Indium(III)	
分子式	Cl ₃ Ho 外观与性状 白色结晶粉末		白色结晶粉末	
分子量	221.177 蒸汽压 840 (20℃)		840 (20℃)	
熔点	586°C 溶解性 溶于水			
密度	3.46 g/cm ³ 稳定性 稳定			
危险标记	/	主要用途	用作光谱纯和高纯试剂	

急性毒性: 大鼠腹腔 LD50: 2370 ug/kg; 大鼠皮下 LDLo: 10 mg/kg。

危险性: 通常对水体是稍微有害的。

危害性:吸入可能有害。该物质对组织、粘膜和上呼吸道破坏力强。可引起皮肤灼伤,引起眼睛灼伤。大量吸入会出现咳嗽,呼吸短促,头痛,恶心,呕吐等症状。

(二十二) 氯化钯

\ <u> \ </u>	> 20(10 NO										
CAS 号			7647-10-1								
中文名称			氯化钯								
英文名称		Palladium chloride									
别 名		氯化亚钯; nci-c60184									
分子式	PdCl ₂	外观与性状 暗棕色粉末									
分子量	177.326	蒸汽压	840 (20°C)								
熔点	500°C	溶解性	易溶于稀盐酸,空气中稳定,能溶于水、乙醇、丙酮和氢溴酸								
密度	3.46 g/cm ³	稳定性	稳定								
危险标记	/	主要用途	用作光谱纯和高纯试剂								

急性毒性: 大鼠口径 LD50: 2704 mg/kg。

危险性:对水生生物毒性极大。对水生生物毒性极大并具有长期持续影响。

危害性: 吞咽有害,接触可能导致皮肤过敏反应并可造成严重眼损伤。

(二十三) 水性封孔剂

水性封孔剂是由水、界面活性剂、三乙醇胺等组成,水性封孔剂主要用于铜、铁、 不锈钢等金属电镀镍、锌、铬、发黑、锡、化学镍等镀种的后处理,处理后的工件表面 光泽度好,无油感,工件与工件之间不会贴连在一起,防指纹、防变色、防水和防氧化 能力强。

(二十四) 硫酸镍

本品有无水物、六水物和七水物三种;商品以六水物为主,为绿色单斜结晶;晶型转化点 53.5℃,103℃时失去 6 个结晶水;溶于水,水溶液呈酸性;有毒。

用途:主要用于电镀工业,作为电镀镍和化学镍的主要原料,也是生产其他镍盐的主要原料;印染工业用以生产酞菁艳蓝络合剂,可作还原染料的媒染剂。医药工业用于生产维生素 C 中氧化反应的催化剂;在硬化油生产中,是油脂加氢的催化剂。此外,还用于制镍镉电池和生产硬质合金等。

毒性及防护:镍盐可损伤人的皮肤,金属镍及其化合物可以破坏细胞代谢。吸入后对呼吸道有刺激性。可引起哮喘和肺嗜酸细胞增多症,可致支气管炎。对眼有刺激性。皮肤接触可引起皮炎和湿疹,常伴有剧烈瘙痒,称之为"镍痒症"。大量口服引起恶心、呕吐和眩晕。最高容许浓度:二价和三价镍的氧化物、硫化物(以 Ni 计)为 0.5mg/m³;水气溶胶形式的镍盐(按 Ni 计算)为 05mg/m³。操作人员工作时要配戴防毒口罩、软管防毒面具。

4.1.5 生产设备

技改扩建后项目的生产设备如下:

序号 设备名称 数量 所在位置 1#端子连续镀镍金锡自动线 1条 4楼 1 2#端子连续镀镍金锡自动线 1条 4 楼 2 3#端子连续镀镍金锡自动线 1条 4 楼 3 1条 4#端子连续镀镍金锡自动线 4 楼 4 5 5#端子连续镀镍金锡自动线 1条 4楼 6#端子连续镀铜镍金锡自动线 1条 4楼 6 7 7#端子连续镀镍金锡自动线 1条 4 楼 8#端子连续镀镍钯金锡自动线 1条 5 楼 8 9 9#端子连续镀镍钯金锡自动线 1条 5 楼 1条 10 10#端子连续镀镍钯金锡自动线 5 楼 11 11#端子连续镀镍钯金锡自动线 1条 5 楼 1条 12#端子连续镀镍钯金锡自动线 12 5 楼

表 4.1-5 技改扩建后项目生产线变化情况一览表

序号	设备名称	数量	所在位置
13	13#端子连续镀镍钯金锡自动线	1条	5 楼
14	14#端子连续镀镍钯金锡自动线	1条	5 楼
15	15#端子连续镀镍钯金锡自动线	1条	6 楼
16	16#端子连续镀镍钯金锡自动线	1条	6 楼
17	17#端子连续镀镍锡自动线	1条	6 楼
18	18#端子连续镀镍锡自动线	1条	6 楼
19	19#端子连续镀铜镍锡金自动线	1条	6 楼
20	20#挂镀镍铬半自动线	1条	2 楼
21	21#端子连续镀银自动线	1条	6 楼
22	22#端子连续镀镍钯金铑钌自动线	1条	7楼
23	23#电铸镍半自动线	1条	2 楼
24	24#塑胶挂镀铜镍铬自动线	1条	2 楼
25	25#滚镀铜镍金锡半自动线	1条	2 楼
26	连续电泳半自动线	1条	7 楼
27	水转印线	1条	2 楼
28	TypeC 滚筒研磨手动线	1条	1 楼
29	C70 滚筒研磨手动线	1条	1 楼
30	散件清洗手动线	1条	2 楼
31	磁力研磨手动线	1条	2 楼
32	燃天然气热水炉(150万大卡)	1台	1 楼

表 4.1-6 各生产设备设备参数

		7.1-0	廿工/ 以田	以田少双				
生产线	设备	数量	母槽			子槽		
土厂 线	以由	数里	长(mm)	宽(mm)	高(mm)	长(mm)	宽(mm)	
	电解脱脂 1	1	1100	600	450	1100	450	
	电解脱脂 2	1	1100	600	450	1100	450	
	回收	1	1100	320	450			
	电解脱脂3	1	1100	600	450	1100	450	
	水洗	1	1100	320	450			
	电解脱脂 4	1	1100	600	450	1100	450	
	水洗 1	1	1100	320	450			
1 ルツフンナルキ	水洗 2	1	1100	320	450			
1#端子连续 镀镍金锡自	水洗 3	1	1100	320	450			
以	活化	1	1100	600	450	1100	450	
30000000000000000000000000000000000000	水洗 1	1	1100	320	450			
	水洗 2	1	1100	320	450			
	水洗 3	1	1100	320	450			
	镀镍1	1	1100	1200	450	1100	450	
	镀镍 2	1	1100	1200	450	1100	450	
	回收	1	1100	600	450			
	镀镍 3	1	1100	1200	450	1100	450	
	回收	1	1100	320	450			

	回收	1	1100	320	450		
		1	1100	320	450		
	 高温镍	1	1100	600	450	1100	450
		1	1100	320	450	1100	430
		1	1100	320	450		
_	 水洗 1	1	1100	320	450		
_	水洗 2	1	1100	320	450		
_	水洗 3	1	1100	320	450		
	水洗 3 水洗 4	1	1100	320	450		
	水洗 * 水洗 5	1	1100	320	450		
	 镀金 1	1	1100	600	450	1100	450
	镀金 2	1	1100	600	450	1100	450
		1	1100	320	450	1100	430
	镀金 3	1	620	320	450	1100	450
						1100	430
	水洗 1 水洗 2	1 1	1100	320	450 450		
	水洗 2 水洗 3			320			
		1	1100	320	450	1100	450
	镀锡 1	1	1100	1200	450	1100	450
	镀锡 2	1	1100	1200	450	1100	450
	镀锡 3	1	1100	1200	450	1100	450
	水洗 1	1	1100	320	450		
	水洗 2	1	1100	320	450		
	水洗 3	1	1100	320	450		
	水洗 4	1	1100	320	450		
	水洗 1	1	1100	600	450		
	水洗 2	1	1100	600	450		
	水洗 3	1	1100	600	450		
	水洗 4	1	1100	600	450		
	整流器	43 台					
	超声波发生器	2 台					
	过滤机	11 台					
	电解脱脂 1	1	1300	620	350	1300	450
	回收	1	1300	330	450		
	电解脱脂 2	1	1300	620	450	1300	450
	电解脱脂 3	1	1300	620	450	1300	450
2#端子连续	水洗	1	1300	330	450		
镀镍金锡自	电解脱脂 4	1	1300	620	450	1300	450
动线	水洗 1	1	1300	330	450		
	水洗 2	1	1300	330	450		
	水洗 3	1	1300	330	450		
	活化	1	1300	620	450	1300	450
	水洗 1	1	1300	330	450		

	水洗 2	1	1300	330	450		
	水洗 3	1	1300	330	450		
	回收	1	1300	600	450		
	普通镍1	1	1300	1420	450	1300	450
	普通镍 2	1	1300	1420	450	1300	450
	普通镍 3	1	1300	1420	450	1300	450
	回收	1	1300	330	450		
-	回收	1	1300	330	450		
	回收	1	1300	330	450		
-	高温镍	1	1300	620	450	1300	450
	回收	1	1300	330	450		
	回收	1	1300	310	450		
	回收	1	1300	310	450		
	水洗 1	1	1300	330	450		
	水洗 2	1	1300	330	450		
	水洗 3	1	1300	330	450		
	镀金1	1	1300	440	450	1300	450
	回收	1	1300	330	450		
	回收	1	1300	330	450		
	镀金2	1	620	320	450	1300	450
	水洗 1	1	1300	330	450		
	水洗 2	1	1300	330	450		
	镀锡 1	1	1300	1420	450	1300	450
	镀锡 2	1	1300	1420	450	1300	450
	水洗 1	1	1300	600	450		
	水洗 2	1	1300	600	450		
	水洗3	1	1300	600	450		
	水洗 4	1	1300	600	450		
	水洗 1	1	1300	320	450		
	水洗 2	1	1300	320	450		
	水洗 3	1	1300	320	450		
	水洗 4	1	1100	320	450		
	水洗 5	1	1300	330	450		
	整流器	50 台					
	超声波发生器	2 台					
	过滤机	12 台					
	电解脱脂 1	1	1300	520	450	1300	450
2世子大体	电解脱脂 2	1	1300	520	450	1300	450
3#端子连续	电解脱脂 3	1	1300	520	450	1300	450
镀镍金锡自	回收	1	1300	390	450		
动线	电解脱脂 4	1	1300	520	450	1300	450

水洗 2	1	1300	250	450		
水洗 3	1	1300	250	450		
活化	1	1300	620	450	1300	450
水洗 1	1	1300	250	450		
水洗 2	1	1300	250	450		
水洗 3	1	1300	250	450		
回收	1	1300	520	450		
普通镍1	1	1300	1640	450	1300	450
普通镍2	1	1300	1640	450	1300	450
普通镍3	1	1300	1640	450	1300	450
回收	1	1300	320	450		
回收	1	1300	250	450		
回收	1	1300	250	450		
回收	1	1300	250	450		
高温镍	1	1300	620	450	1300	450
回收	1	1300	250	450		
回收	1	1300	250	450		
回收	1	1300	250	450		
水洗 1	1	1300	320	450		
水洗 2	1	1300	320	450		
水洗 3	1	1300	320	450		
镀金1	1	1040	440	490	1300	450
镀金2	1	1300	440	490	1300	450
回收	1	1300	260	450		
回收	1	1300	260	450		
水洗 1	1	900	260	450		
水洗 2	1	1300	260	450		
水洗 3	1	1300	260	450		
镀金3	1	1300	320	450	1300	450
回收	1	1300	200	450		
回收	1	1300	200	450		
水洗 1	1	1300	520	450		
水洗 2	1	1300	520	500		
镀锡1	1	1300	1640	450	1300	450
镀锡 2	1	1300	430.5	450	1300	450
水洗 1	1	1300	250	450		
水洗 2	1	1300	250	450		
水洗 3	1	1300	250	450		
水洗 4	1	1300	250	450		
水洗 1	1	1300	320	450		
水洗 2	1	1300	320	450		
水洗 3	1	1300	320	450		

	水洗 4	1	1300	320	450		
	整流器	47 臺					
	超聲波發生器	2臺					
	過濾機	10 臺					
	电解脱脂 1	1	1000	540	500	1100	500
	电解脱脂 2	1	1000	540	500	1100	500
	电解脱脂 3	1	1000	540	500	1100	500
	电解脱脂 4	1	1000	540	500	1100	500
	回收	1	1100	250	500		
	水洗 1	1	1100	250	500		
	水洗 2	1	1100	250	500		
	水洗 3	1	1100	250	500		
	 活化	1	1100	540	500	1100	500
	水洗 1	1	1100	250	500		
	水洗 2	1	1100	250	500		
	水洗 3	1	1100	250	500		
	 水洗 4	1	1100	250	500		
	普通镍1	1	1100	1690	500	1100	500
	普通镍 2	1	1100	1690	500	1100	500
	普通镍3	1	1100	1690	500	1100	500
	回收	1	1100	250	500		
	回收	1	1100	250	500		
4#端子连续	回收	1	1100	250	500		
镀镍金锡自	高温镍	1	1100	600	500	1100	500
动线	回收	1	1100	250	500		
	回收	1	1100	250	500		
	回收	1	1100	250	500		
	水洗 1	1	1100	250	500		
	 水洗 2	1	1100	250	500		
	水洗 3	1	1100	250	500		
	镀金1	1	820	600	600	1100	500
	镀金 2	1	1100	430	500	1100	500
	回收	1	1100	400	500		
	镀金3	1	620	320	450	1100	500
	回收	1	1100	250	500		
	回收	1	1100	250	500		
	回收	1	1100	250	500		
	回收	1	1100	250	500		
	水洗 1	1	1100	250	500		
	水洗 2	1	1100	250	500		
	水洗 3	1	1100	250	500		
	水洗 4	1	1100	250	500		

	镀锡1	1	1100	1680	500	1100	500
	镀锡 2	1	1100	1680	500	1100	500
	水洗 1	1	1100	250	500		
	水洗 2	1	1100	250	500		
	水洗 3	1	1100	250	500		
	水洗 1	1	1100	540	500		
	水洗 2	1	1100	540	500		
	水洗 3	1	1100	540	500		
	水洗 1	1	1100	250	500		
	水洗 2	1	1100	250	500		
	整流器	56 臺					
	超聲波發生器	4 臺					
	過濾機	12 臺					
	电解脱脂 1	1	1300	600	400	1300	400
	电解脱脂 2	1	1300	600	400	1300	400
	电解脱脂 3	1	1300	600	400	1300	400
	电解脱脂 4	1	1300	600	400	1300	400
	回收	1	1300	250	400		
	水洗 1	1	1300	250	400		
	 水洗 2	1	1300	250	400		
	水洗 3	1	1300	250	400		
	 活化	1	1300	600	400	1300	400
	 水洗 1	1	1300	470	400		
	普通镍 1	1	1300	1500	400	1300	400
	普通镍1	1	1300	1500	400		
	回收	1	1300	250	400		
5#端子连续	回收	1	1300	250	400		
镀镍金锡自	回收	1	1300	250	400		
动线		1	1300	250	400		
	高温镍	1	1300	670	400	1300	400
	回收	1	1300	270	400		
	水洗 1	1	1300	250	400		
	水洗 2	1	1300	250	400		
	水洗 3	1	1300	250	400		
	水洗 4	1	1300	250	400		
	水洗 5	1	1300	250	400		
	镀金1	1	1300	400	400	1300	400
-	镀金 2	1	1200	500	550	1300	400
-	镀金3	1	1000	520	560	1300	400
-		1	1300	250	400	1500	100
-		1	1300	250	400		
-		1	1300	250	400		

	镀金4	1	1100	380	500	1300	400
	镀金5	1	800	800	470	1300	400
	回收	1	1300	470	400		
	镀金6	1	1120	220	400	1300	400
	水洗 1	1	1300	470	400		
	水洗 2	1	1300	470	400		
	镀锡	1	1300	1400	400	1300	400
	水洗 1	1	1300	250	400		
	水洗 2	1	1300	250	400		
	水洗 3	1	1300	250	400		
	水洗 1	1	1300	300	400		
	水洗 2	1	1300	300	400		
	水洗 3	1	1300	300	400		
	水洗 1	1	1300	300	400		
	水洗 2	1	1300	250	400		
	水洗 3	1	1300	250	400		
	 水洗 4	1	1300	600	400		
	整流器	43 臺					
	超聲波發生器	3臺					
	過濾機	13 臺					
	超声波脱脂	1	1100	400	400	1300	400
	电解脱脂 1	1	1300	600	400	1300	400
	电解脱脂 2	1	1300	600	400	1300	400
	电解脱脂 3	1	1300	600	400	1300	400
	电解脱脂 4	1	1300	600	400	1300	400
	回收	1	1300	250	400		
	回收	1	1300	250	400		
	水洗 1	1	1300	250	400		
	水洗 2	1	1300	250	400		
	活化	1	1300	600	400	1300	400
6#端子连续 -	预镀镍	1	1300	400	400	1300	400
镀铜镍金锡 -	回收	1	1300	250	400		
自动线	回收	1	1300	250	400		
	水洗 1	1	1300	250	400		
	水洗 2	1	1300	250	400		
		1	1300	400	400	1300	400
	水洗 1	1	1300	250	400	1.2.0	
	水洗 2	1	1300	250	400		
	普通镍	1	1300	1500	400	1300	400
		1	1300	1500	400	1300	400
-	回收	1	1300	250	400	1200	100
-	回收	1	1300	250	400		

	回收	1	1300	250	400		
	回收	1	1300	250	400		
	普通镍	1	1300	670	400	1300	400
	回收	1	1300	270	400		
	回收	1	1300	250	400		
	回收	1	1300	250	400		
	回收	1	1300	270	400		
	回收	1	1300	250	400		
	回收	1	1300	250	400		
	高温镍	1	1300	400	400	1300	400
	回收	1	1300	250	400		
	回收	1	1300	250	400		
	回收	1	1300	250	400		
	水洗 1	1	1300	250	400		
	水洗 2	1	1300	250	400		
	水洗 3	1	1300	250	400		
	镀金1	1	1300	400	400	1300	400
	回收	1	1300	250	400		
	回收	1	1300	250	400		
	回收	1	1300	250	400		
	回收	1	1300	250	400		
	回收	1	1300	250	400		
	镀金2	1	1120	220	400	1300	400
	回收	1	1300	250	400		
	回收	1	1300	250	400		
	镀金3	1	800	400	500	1300	400
	回收	1	1300	250	400		
	回收	1	1300	250	400		
	回收	1	1300	250	400		
Ī	水洗 1	1	1300	200	400		
	水洗 2	1	1300	200	400		
	水洗 3	1	1300	200	400		
	鍍錫	1	1300	700	400	1300	400
	水洗 1	1	1300	300	400		
	水洗 2	1	1300	300	400		
	水洗 1	1	1300	300	400		
Ī	水洗 2	1	1300	300	400		
	水洗 3	1	1300	300	400		
	水洗 1	1	1300	300	400		
	水洗 2	1	1300	300	400		
	水洗 1	1	1300	600	400		
Ţ	整流器	3	36 台				

	超聲波發生器	5 台					
	過濾機	5 台					
	超聲波脫脂	1	1250	650	400	1250	400
	电解脱脂 1	1	1250	650	400	1250	400
	电解脱脂 2	1	1250	650	400	1250	400
	回收	1	1250	300	400		
	电解脱脂 3	1	1250	650	400	1250	400
	水洗 1	1	1250	250	400		
	水洗 2	1	1250	250	400		
	水洗 3	1	1250	250	400		
	活化	1	1250	650	400	1250	400
	水洗 1	1	1250	250	400		
	水洗 2	1	1250	250	400		
	水洗 3	1	1250	250	400		
	普通镍1	1	1500	1250	400	1250	400
	回收	1	850	650	400		
	普通镍 2	1	1500	1250	400	1250	400
	普通镍3	1	1500	1250	400	1250	400
	回收	1	1250	250	400		
	回收	1	1250	250	400		
カルツマンケルキ	回收	1	1250	250	400		
7#端子连续	高溫鎳	1	650	1250	400	1250	400
镀镍金锡自 动线	回收	1	640	300	400		
	回收	1	1250	250	400		
	回收	1	1250	250	400		
	回收	1	1250	250	400		
	水洗 1	1	1250	250	400		
	水洗 2	1	1250	250	400		
	镀金1	1	720	320	510	1250	400
	镀金2	1	870	450	500	1250	400
	回收	1	1250	250	400		
	回收	1	1250	250	400		
	回收	1	1250	250	400		
	镀金3	1	1250	300	400	1250	400
	水洗 1	1	1250	250	400		
	水洗 2	1	1250	250	400		
	水洗 3	1	1250	250	400		
	水洗 4	1	1250	250	400		
	鍍錫 1	1	1250	2000	400	1250	400
	鍍錫 2	1	1250	1500	400	1250	400
	水洗 1	1	1250	250	400		
	水洗 2	1	1250	250	400		

	水洗 3	1	1250	250	400		
	水洗 1	1	1250	650	400		
	水洗 2	1	1250	650	400		
	水洗 1	1	1250	250	400		
	水洗 2	1	1250	250	400		
	水洗 3	1	1250	250	400		
	整流器	45 臺					
	超聲波發生器	4 臺					
	過濾機	10 臺					
	电解脱脂 1	1	1100	540	450	1100	450
	电解脱脂 2	1	1100	540	450	1100	450
	电解脱脂 3	1	1100	540	450	1100	450
	电解脱脂 4	1	1100	540	450	1100	450
	回收	1	1100	250	450		
	水洗 1	1	1100	250	450		
	水洗 2	1	1100	250	450		
	水洗 3	1	1100	250	450		
	活化 1	1	1100	500	450	1100	450
	活化 2	1	990	400	410	1100	450
	水洗 1	1	1100	250	450		
	水洗 2	1	1100	250	450		
	水洗 3	1	1100	250	450		
	普通镍1	1	1100	1680	450	1100	450
	普通镍 2	1	1100	1680	450	1100	450
8#端子连续	回收	1	1100	250	450		
镀镍钯金锡	回收	1	1100	250	450		
自动线	回收	1	1100	250	450		
	高溫鎳	1	1100	600	450	1100	450
	回收	1	1100	250	450		
	回收	1	1100	250	450		
	回收	1	1100	250	450		
	預鍍镍	1	820	300	550	1100	450
	 水洗 1	1	1100	250	450		
	水洗 2	1	1100	250	450		
	水洗 3	1	1100	250	450		
	刷鍍鈀	1	820	300	550	1100	450
	回收	1	1100	250	450		
	回收	1	1100	250	450		
	回收	1	1100	250	450		
	水洗 1	1	1100	250	450		
	水洗 2	1	1100	250	450		
	镀金1	1	820	300	550	1100	450

	回收	1	1100	500	450		
	浸金 2	1	820	300	550	1100	450
	回收	1	1100	250	450		
	回收	1	1100	250	450		
	回收	1	1100	250	450		
	水洗 1	1	1100	250	450		
	水洗 2	1	1100	250	450		
	鍍錫	1	1100	1680	450	1100	450
	水洗 1	1	1100	250	450		
	水洗 2	1	1100	250	450		
	水洗 3	1	1100	250	450		
	水洗 4	1	1100	250	450		
	水洗 5	1	1100	250	450		
	水洗 1	1	1100	540	450		
	水洗 2	1	1100	540	450		
	水洗 3	1	1100	540	450		
	整流器	53 臺					
	超聲波發生器	2臺					
	過濾機	28 臺					
	电解脱脂 1	1	1100	540	450	1100	450
	电解脱脂 2	1	1100	540	450	1100	450
	电解脱脂 3	1	1100	540	450	1100	450
	电解脱脂 4	1	1100	540	450	1100	450
	回收	1	1100	250	450		
	水洗 1	1	1100	250	450		
	水洗 2	1	1100	250	450		
	水洗 3	1	1100	250	450		
	活化 1	1	1100	500	450	1100	450
	活化 2	1	930	370	480		
9#端子连续	水洗 1	1	1100	250	450		
镀镍钯金锡	水洗 2	1	1100	250	450		
自动线	水洗 3	1	1100	250	450		
	超聲波水洗	1	890	310	480		
	普通镍 1	1	1100	1680	450	1100	450
	普通镍 2	1	1100	1680	450	1100	450
	回收	1	1100	250	450		
	回收	1	1100	250	450		
	回收	1	1100	250	450		
	高溫鎳	1	1100	600	450	1100	450
	回收	1	1100	250	450		
	回收	1	1100	250	450		
	回收	1	1100	250	450		

	 預鍍镍	1	820	300	450	1100	450
		1	1100	250	450	1100	430
		1	1100	250	450		
	水洗 3	1	1100	250	450		
-		1	820	300	550	1100	450
-	回收	1	1100	250	450	1100	430
-		1	1100	250	450		
-							
-		1	1100	250	450		
-	水洗 1	1	1100	250	450		
-	水洗 2	1	1100	250	450	1100	450
_	镀金1	1	820	300	550	1100	450
-	回收	1	1100	250	450		
_	回收	1	1100	250	450		
	镀金 2	1	820	300	550	1100	450
_	回收	1	1100	750	450		
	回收	1	1100	750	450		
	回收	1	1100	750	450		
	水洗 1	1	1100	250	450		
	水洗 2	1	1100	250	450		
	鍍錫	1	1100	1680	450	1100	450
	水洗 1	1	1100	250	450		
	水洗 2	1	1100	250	450		
	水洗 3	1	1100	250	450		
	水洗 1	1	1100	540	450		
	水洗 2	1	1100	540	450		
	水洗 3	1	1100	540	450		
	水洗 4	1	1100	540	450		
	整流器	42 臺					
	超聲波發生器	3 臺					
	過濾機	10 臺					
	电解脱脂 1	1	1100	540	450	1100	450
	电解脱脂 2	1	1100	540	450	1100	450
	电解脱脂 3	1	1100	540	450	1100	450
	电解脱脂 4	1	1100	540	450	1100	450
	回收	1	1100	250	450		
10#端子连续	水洗 1	1	1100	250	450		
镀镍钯金锡	水洗 2	1	1100	250	450		
自动线	水洗 3	1	1100	250	450		
	活化 1	1	1100	500	450	1100	450
-	活化 2	1	1100	500	410		
	水洗 1	1	1100	250	450		
	水洗 2	1	1100	250	450		

水洗 3	1	1100	250	450		
回收	1	110	400	520		
普通镍1	1	1100	1680	450	1100	450
普通镍 2	1	1100	1680	450	1100	450
回收	1	1100	250	450		
回收	1	1100	250	450		
回收	1	1100	250	450		
高溫鎳	1	1100	600	450	1100	450
回收	1	1100	250	450		
回收	1	1100	250	450		
回收	1	1100	250	450		
預鍍镍	1	820	300	550	1100	450
水洗 1	1	1100	250	450		
水洗 2	1	1100	250	450		
水洗 3	1	1100	250	450		
刷鍍鈀	1	820	300	550	1100	450
回收	1	1100	250	450		
回收	1	1100	250	450		
回收	1	1100	250	450		
水洗 1	1	1100	250	450		
水洗 2	1	1100	250	450		
镀金1	1	820	300	550	1100	450
回收	1	1100	250	450		
回收	1	1100	250	450		
浸金 2	1	820	300	550	1100	450
回收	1	1100	250	450		
回收	1	1100	250	450		
回收	1	1100	250	450		
水洗 1	1	1100	250	450		
水洗 2	1	1100	250	450		
鍍錫	1	1100	1680	450	1100	450
水洗 1	1	1100	250	450		
水洗 2	1	1100	250	450		
水洗 3	1	1100	250	450		
水洗 4	1	1100	540	450		
水洗 1	1	1100	540	450		
水洗 2	1	1100	250	450		
水洗 3	1	1100	250	450		
水洗 4	1	1100	500	450		
整流器	54 臺					
超聲波發生器	2臺					
過濾機	11 臺					

电解脱脂 1	00 450 00 450 00 450 00 450 00 450 00 450
电解脱脂 3	00 450 00 450 00 450 00 450 00 450
电解脱脂 4	00 450 00 450 00 450 00 450
回收 1 1100 250 450 水洗 1 1 1100 250 450 水洗 2 1 1100 250 450 水洗 3 1 1100 250 450 活化 1 1 1100 500 410 110 活化 2 1 1100 500 410 110 水洗 1 1 1100 250 450 水洗 2 1 1100 250 450 水洗 3 1 1100 250 450 回收 1 1100 250 450 普通镍 1 1 1100 1680 450 110 普通镍 2 1 1100 1680 450 110 回收 1 1100 250 450 回收 1 1100 250 450	00 450 00 450 00 450
水洗 1	00 450
水洗 2 1 1100 250 450 水洗 3 1 1100 250 450 活化 1 1 1100 500 450 110 活化 2 1 1100 500 410 110 水洗 1 1 1100 250 450 水洗 2 1 1100 250 450 水洗 3 1 1100 250 450 回收 1 110 400 520 普通镍 1 1 1100 1680 450 110 普通镍 2 1 1100 1680 450 110 自收 1 1100 250 450 回收 1 1100 250 450 百枚 1 1100 250 450	00 450
水洗3 1 1100 250 450 活化1 1 1100 500 450 110 活化2 1 1100 500 410 110 水洗1 1 1100 250 450 水洗2 1 1100 250 450 水洗3 1 1100 250 450 回收 1 110 400 520 普通镍1 1 1100 1680 450 110 普通镍2 1 1100 1680 450 110 回收 1 1100 250 450 百數線 1 820 300 550 110 水洗1 1 1100 250 450 水洗2 1 1100 250 450	00 450
活化 1 1100 500 450 110	00 450
活化 2 1 1100 500 410 110 水洗 1 1100 次洗 1 1100 250 450	00 450
水洗 1 1 1100 250 450 水洗 2 1 1100 250 450 水洗 3 1 1100 250 450 回收 1 110 400 520 普通镍 1 1 1100 1680 450 110 普通镍 2 1 1100 1680 450 110 回收 1 1100 250 450 可缴镍 1 820 300 550 110 水洗 1 1 1100 250 450 水洗 2 1 1100 250 450	00 450
水洗 2 1 1100 250 450 水洗 3 1 1100 250 450 回收 1 110 400 520 普通镍 1 1 1100 1680 450 110 普通镍 2 1 1100 1680 450 110 回收 1 1100 250 450 回收 1 1100 250 450 高溫鎳 1 1100 250 450 回收 1 1100 250 450 回收 1 1100 250 450 回收 1 1100 250 450 百收 1 1100 250 450 預鍍镍 1 820 300 550 110 水洗 1 1 1100 250 450 水洗 2 1 1100 250 450	
水洗 3 1 1100 250 450 回收 1 110 400 520 普通镍 1 1 1100 1680 450 110 普通镍 2 1 1100 1680 450 110 回收 1 1100 250 450 回收 1 1100 250 450 回收 1 1100 250 450 高温鎳 1 1100 250 450 回收 1 1100 250 450 回收 1 1100 250 450 阿收 1 1100 250 450 預鍍镍 1 820 300 550 110 水洗 1 1 1100 250 450 水洗 2 1 1100 250 450	
回收 1 110 400 520 普通镍 1 1 1100 1680 450 110 普通镍 2 1 1100 1680 450 110 回收 1 1100 250 450 可收 1 1100 250 450 可收 1 1100 250 450 可缴镍 1 820 300 550 110 水洗 1 1 1100 250 450 水洗 2 1 1100 250 450	
普通镍 1 1 1100 1680 450 110 普通镍 2 1 1100 1680 450 110 回收 1 1100 250 450 回收 1 1100 250 450 回收 1 1100 250 450 高溫鎳 1 1100 600 450 110 原设 1 1100 250 450 回收 1 1100 250 450 阿收 1 1100 250 450 預鍍镍 1 820 300 550 110 水洗 1 1 1100 250 450 水洗 2 1 1100 250 450	
普通镍 2 1 1100 1680 450 110 回收 1 1100 250 450 回收 1 1100 250 450 回收 1 1100 250 450 高溫鎳 1 1100 600 450 110 回收 1 1100 250 450 回收 1 1100 250 450 百收 1 1100 250 450 預鍍镍 1 820 300 550 110 水洗 1 1 1100 250 450 水洗 2 1 1100 250 450	
回收 1 1100 250 450 回收 1 1100 250 450 回收 1 1100 250 450 高温線 1 1100 600 450 110 原線 1 1100 250 450 回收 1 1100 250 450 回收 1 1100 250 450 預鍍镍 1 820 300 550 110 水洗 1 1 1100 250 450 水洗 2 1 1100 250 450	
回收 1 1100 250 450 回收 1 1100 250 450 高溫鎳 1 1100 600 450 110 直收 1 1100 250 450 回收 1 1100 250 450 回收 1 1100 250 450 預鍍镍 1 820 300 550 110 水洗 1 1 1100 250 450 水洗 2 1 1100 250 450	
回收 1 1100 250 450 高温線 1 1100 600 450 110 镀镍钯金锡自动线 回收 1 1100 250 450 回收 1 1100 250 450 回收 1 1100 250 450 預鍍镍 1 820 300 550 110 水洗 1 1 1100 250 450 水洗 2 1 1100 250 450	
高温線 1 1100 600 450 110 镀镍钯金锡自动线 回收 1 1100 250 450 回收 1 1100 250 450 回收 1 1100 250 450 預鍍镍 1 820 300 550 110 水洗 1 1 1100 250 450 水洗 2 1 1100 250 450	1
回收 1 1100 250 450 實験 回收 1 1100 250 450 回收 1 1100 250 450 可數線 1 820 300 550 110 水洗 1 1 1100 250 450 水洗 2 1 1100 250 450	00 450
e 回收 1 1100 250 450 回收 1 1100 250 450 預鍍镍 1 820 300 550 110 水洗 1 1 1100 250 450 水洗 2 1 1100 250 450	90 430
目 功线 回收 1 1100 250 450 預 鏡 镍 1 820 300 550 110 水洗 1 1 1100 250 450 水洗 2 1 1100 250 450	
預鍍镍 1 820 300 550 110 水洗 1 1 1100 250 450 水洗 2 1 1100 250 450	
水洗 1 1 1100 250 450 水洗 2 1 1100 250 450	00 450
水洗 2 1 1100 250 450	130
/N/TE 3 1 1100 /30 430	
刷鍍鈀 1 820 300 550 110	00 450
回收 1 1100 250 45	- 120
回收 1 1100 250 45	
回收 1 1100 250 45	
水洗 1 1 1100 250 450	
水洗 2 1 1100 250 450	
镀金 1 1 820 300 550 110	00 450
回收 1 1100 250 450	
回收 1 1100 250 450	
镀金 2 1 820 300 550 110	00 450
回收 1 1100 250 450	
回收 1 1100 250 450	
回收 1 1100 250 450	
水洗 1 1 1100 250 450	
水洗 2 1 1100 250 450	

	鍍錫	1	1100	1680	450	1100	450
	水洗 1	1	1100	250	450		
	水洗 2	1	1100	250	450		
	水洗 3	1	1100	250	450		
	水洗 4	1	1100	250	450		
	水洗 1	1	1100	540	450		
	水洗 2	1	1100	540	450		
	水洗 3	1	1100	540	450		
	水洗 4	1	1100	540	450		
	整流器	51 臺					
	超聲波發生器	3 臺					
	過濾機	7臺					
	电解脱脂 1	1	1100	540	450	1100	450
	电解脱脂 2	1	1100	540	450	1100	450
	电解脱脂 3	1	1100	540	450	1100	450
	电解脱脂 4	1	1100	540	450	1100	450
	回收	1	1100	250	450		
	水洗 1	1	1100	250	450		
	水洗 2	1	1100	250	450		
	水洗 3	1	1100	250	450		
	活化	1	1100	540	450	1100	450
	水洗 1	1	1100	250	450		
	水洗 2	1	1100	250	450		
	水洗 3	1	1100	250	450		
	水洗 4	1	820	320	500		
10 () 出 了) 大 (土	水洗 5	1	1100	250	450		
12#端子连续	水洗 6	1	1100	250	450		
镀镍钯金锡	水洗 7	1	1100	250	450		
自动线	普通镍 1	1	1100	1680	450	1100	450
	普通镍 2	1	1100	1680	450	1100	450
	回收	1	1100	370	450		
	回收	1	1100	250	450		
	回收	1	1100	250	450		
	回收	1	1100	250	450		
	高溫鎳	1	1100	600	450	1100	450
	回收	1	1100	250	450		
	回收	1	1100	250	450		
	回收	1	1100	250	450		
	預鍍镍	1	700	400	460	1100	450
	水洗 1	1	1100	250	450		
	水洗 2	1	1100	250	450		
	水洗 3	1	1100	250	450		

	刷鍍鈀	1	820	310	550	1100	450
_	回收	1	1100	250	450		
	回收	1	1100	250	450		
	回收	1	1100	250	450		
	回收	1	1100	250	450		
	回收	1	1100	250	450		
	 水洗 1	1	1100	250	450		
	水洗 2	1	1100	250	450		
	水洗 3	1	1100	250	450		
	镀金1	1	820	310	550	1100	450
	回收	1	1100	250	450		
	回收	1	1100	250	450		
	镀金 2	1	820	310	550	1100	450
	回收	1	1100	260	350		
	回收	1	1100	260	350		
	水洗 1	1	1100	250	450		
	水洗 2	1	1100	250	450		
	水洗 3	1	1100	250	450		
	鍍錫 1	1	1500	1100	450	1100	450
	鍍錫 2	1	1100	1680	450	1100	450
	水洗 1	1	1100	250	450		
	水洗 2	1	1100	250	450		
	水洗 3	1	1100	250	450		
	水洗 4	1	1100	250	450		
	水洗 1	1	1100	540	450		
	水洗 2	1	1100	540	450		
	水洗 3	1	1100	540	450		
	水洗 4	1	1100	540	450		
	整流器	56 臺					
	超聲波發生器	4 臺					
	過濾機	11 臺					
	电解脱脂 1	1	1100	540	450	1100	450
	电解脱脂 2	1	1100	540	450	1100	450
	电解脱脂 3	1	1100	540	450	1100	450
	电解脱脂 4	1	1100	540	450	1100	450
13#端子连续	回收	1	1100	250	450		
镀镍钯金锡	水洗 1	1	1100	250	450		
自动线	水洗 2	1	1100	250	450		
	水洗 3	1	1100	250	450		
	活化	1	1100	540	450	1100	450
	水洗 1	1	1100	250	450	1100	450
	水洗 2	1	1100	250	450		

水洗 3	1	1100	250	450		
普通镍 1	1	1100	1680	450	1100	450
普通镍 2	1	1100	1680	450	1100	450
回收	1	1100	370	450		
回收	1	1100	250	450		
回收	1	1100	250	450		
回收	1	1100	250	450		
高溫鎳	1	1100	600	450	1100	450
回收	1	1100	250	450	1100	450
回收	1	1100	250	450		
回收	1	1100	250	450		
預鍍镍	1	700	400	460	1100	450
水洗 1	1	1100	250	450		
水洗 2	1	1100	250	450		
水洗 3	1	1100	250	450		
刷鍍鈀	1	820	520	550	1100	450
回收	1	1100	250	450		
回收	1	1100	250	450		
回收	1	1100	250	450		
回收	1	1100	250	450		
水洗 1	1	1100	250	450		
水洗 2	1	1100	250	450		
水洗 3	1	1100	250	450		
水洗 4	1	1100	250	450		
镀金1	1	820	310	550	1100	450
回收	1	1100	250	450		
回收	1	1100	250	450		
镀金 2	1	820	310	550	1100	450
回收	1	1100	250	450		
回收	1	1100	250	450		
回收	1	1100	250	450		
水洗 1	1	1100	250	450		
水洗 2	1	1100	250	450		
水洗 3	1	1100	250	450		
鍍錫 1	1	1500	1100	450	1100	450
鍍錫 2	1	1100	1680	450	1100	450
水洗 1	1	1100	250	450		
水洗 2	1	1100	250	450		
水洗 3	1	1100	250	450		
水洗 4	1	1100	250	450		
水洗 1	1	1100	540	450		
水洗 2	1	1100	540	450		
I	ı		i	1	ı	

	水洗 3	1	1100	540	450		
	水洗 4	1	1100	540	450		
	整流器	48 臺					
	超聲波發生器	4 臺					
	過濾機	9 臺					
	电解脱脂 1	1	1100	540	450	1100	450
	电解脱脂 2	1	1100	540	450	1100	450
	电解脱脂 3	1	1100	540	450	1100	450
	电解脱脂 4	1	1100	540	450	1100	450
	回收	1	1100	250	450		
	水洗 1	1	1100	250	450		
	水洗 2	1	1100	250	450		
	水洗 3	1	1100	250	450		
	活化	1	1100	540	450	1100	450
	水洗 1	1	1100	250	450		
	水洗 2	1	1100	250	450		
	水洗 3	1	1100	250	450		
	普通镍 1	1	1100	1680	450	1100	450
	普通镍 2	1	1100	1680	450	1100	450
	回收	1	1100	370	450		
	回收	1	1100	250	450		
	回收	1	1100	250	450		
14#端子连续	回收	1	1100	250	450		
镀镍钯金锡	高溫鎳	1	1100	600	450	1100	450
自动线	回收	1	1100	250	450		
	回收	1	1100	250	450		
	回收	1	1100	250	450		
	預鍍镍	1	700	400	460	1100	450
	水洗 1	1	1100	250	450		
	水洗 2	1	1100	250	450		
	水洗 3	1	1100	250	450		
	刷鍍钯	1	820	580	560	1100	450
	回收	1	1100	250	450		
	水洗 1	1	1100	250	450		
	水洗 2	1	1100	250	450		
	水洗 3	1	1100	250	450		
	水洗 4	1	1100	250	450		
	镀金1	1	820	310	550	1100	450
	回收	1	1100	250	450		
	回收	1	1100	250	450		
	镀金2	1	820	310	550	1100	450
	回收	1	1100	250	450		

	回收	1	1100	250	450		
	回收	1	1100	250	450		
	水洗 1	1	1100	250	450		
	水洗 2	1	1100	250	450		
	水洗 3	1	1100	250	450		
	镀锡 1	1	1600	1100	470	1100	450
	镀锡 2	1	1100	1680	450	1100	450
	水洗 1	1	1100	250	450		
	水洗 2	1	1100	250	450		
	水洗 3	1	1100	250	450		
	水洗 4	1	1100	540	450		
	水洗 1	1	1100	540	450		
	水洗 2	1	1100	250	450		
	水洗 3	1	1100	250	450		
	水洗 4	1	1100	540	450		
	整流器	51 臺					
	超聲波發生器	4臺					
	過濾機	11 臺					
	电解脱脂 1	1	1100	540	450	1100	450
	电解脱脂 2	1	1100	540	450	1100	450
	电解脱脂 3	1	1100	540	450	1100	450
	电解脱脂 4	1	1100	540	450	1100	450
	回收	1	1100	250	450	1100	150
_	水洗 1	1	1100	250	450		
-	水洗 2	1	1100	250	450		
	水洗 3	1	1100	250	450		
	活化 1	1	1100	500	450	1100	450
	活化 2	1	1100	500	410	1100	450
		1	1100	250	450	1100	430
15#端子连续	水洗 1 水洗 2	1	1100	250	450		
镀镍钯金锡 -	水洗 2 水洗 3	1	1100	250	450		
自动线		1	1100	400	520		
	 普通镍 1	1	1100	1680	450	1100	450
		1	1100	1680	450		
	回收	1	1100	250	450	1100	450
_							
_	回收	1	1100	250	450		
-	回收	1	1100	250	450	1100	450
_	高溫鎳	1	1100	600	450	1100	450
	回收	1	1100	250	450		
	回收	1	1100	250	450		
_	回收	1	1100	250	450	44	
	預鍍镍	1	820	300	550	1100	450

水洗 1 水洗 2	1	1100	250	450		
	1 1					
→L/3/H- つ		1100	250	450		
水洗 3	1	1100	250	450		
刷鍍鈀	1	820	300	550	1100	450
	1	1100	250	45		
回收	1	1100	250	45		
回收	1	1100	250	45		
水洗 1	1	1100	250	450		
水洗 2	1	1100	250	450		
镀金1	1	820	300	550	1100	450
回收	1	1100	250	450		
回收	1	1100	250	450		
镀金 2	1	820	300	550	1100	450
回收	1	1100	250	450		
回收	1	1100	250	450		
回收	1	1100	250	450		
水洗 1	1	1100	250	450		
水洗 2	1	1100	250	450		
鍍錫	1	1100	1680	450	1100	450
水洗 1	1	1100	250	450		
 水洗 2	1	1100	250	450		
水洗 3	1	1100	250	450		
水洗 4	1	1100	250	450		
 水洗 1	1	1100	540	450		
	1	1100	540	450		
		1100				
		1100	0.0			
		1100	540	450	1100	450
						450
						450
						450
					1100	730
	水洗 1 水洗 2 镀金 1 回收 回收 回收 回收 可收 不洗 1 水洗 2 鍍錫 水洗 1 水洗 2 水洗 3 水洗 4	回收 1 水洗 1 1 水洗 2 1 镀金 1 1 回收 1 水洗 1 1 水洗 2 1 破錫 1 水洗 3 1 水洗 4 1 水洗 3 1 水洗 4 1 水洗 5 臺 超聲波發生器 4臺 超離機 11 臺 电解脱脂 1 1 电解脱脂 2 1 电解脱脂 3 1 电解脱脂 4 1 回收 1 水洗 1 1 水洗 2 1 水洗 3 1 市 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	回收 1 1100 回收 1 1100 水洗 1 1 1100 水洗 2 1 1100 碳金 1 1 820 回收 1 1100 应收 1 1100 水洗 1 1 100 水洗 1 1 100 水洗 2 1 1100 水洗 2 1 1100 水洗 2 1 1100 水洗 3 1 1100 水洗 4 1 1100 水洗 4 1 1100 水洗 3 1 1100 水洗 4 1 1100 水洗 4 1 1100 水洗 56臺 超聲波發生器 4臺 過濾機 11臺 电解脫脂 1 1 1100 电解脫脂 1 1 1100 电解脫脂 2 1 1100 中解脫脂 2 1 1100 水洗 4 1 1100 水洗 51 1 1100	回收 1 1100 250 回收 1 1100 250 水洗 1 1 1100 250 水洗 2 1 1100 250 镀金 1 1 820 300 回收 1 1100 250 水洗 1 1 1100 250 水洗 2 1 1100 250 水洗 2 1 1100 250 水洗 2 1 1100 250 水洗 3 1 1100 250 水洗 4 1 1100 250 水洗 4 1 1100 540 水洗 3 1 1100 540 水洗 3 1 1100 540 水洗 4 1 1100 540 水洗 4 1 1100 540 水洗 56 臺	回收 1 1100 250 45 回收 1 1100 250 45 水洗1 1 1100 250 450 水洗2 1 1100 250 450 酸金1 1 820 300 550 回收 1 1100 250 450 应收 1 1100 250 450 水洗1 1 1100 250 450 水洗1 1 1100 250 450 水洗2 1 1100 250 450 水洗2 1 1100 250 450 水洗3 1 1100 250 450 水洗3 1 1100 250 450 水洗4 1 1100 250 450 水洗3 1 1100 540 450 水洗1 1 1100 540 450 水洗1 1 1100 540 450 東解脫脂2 1 1100 540 450 电解脫脂3 1 1100 540 450 电解脫脂3 1 1100 540 450 电解脫脂4 1 1100 540 450 电解脫脂4 1 1100 540 450 市洗1 1 1100 250 450 水洗1 1 1100 250 450 水洗1 1 1100 250 450 水洗2 1 1100 250 450 水洗3 1 1100 500 450	回收 1 1100 250 45

水洗 3	1	1100	250	450		
回收	1	110	400	520		
普通镍 1	1	1100	1680	450	1100	450
普通镍 2	1	1100	1680	450	1100	450
回收	1	1100	250	450		
回收	1	1100	250	450		
回收	1	1100	250	450		
高溫鎳	1	1100	600	450	1100	450
回收	1	1100	250	450		
回收	1	1100	250	450		
回收	1	1100	250	450		
預鍍镍	1	820	300	550	1100	450
水洗 1	1	1100	250	450		
水洗 2	1	1100	250	450		
水洗 3	1	1100	250	450		
刷鍍鈀	1	820	300	550	1100	450
回收	1	1100	250	45		
回收	1	1100	250	45		
回收	1	1100	250	45		
水洗 1	1	1100	250	450		
水洗 2	1	1100	250	450		
镀金1	1	820	300	550	1100	450
回收	1	1100	250	450		
回收	1	1100	250	450		
镀金2	1	820	300	550	1100	450
回收	1	1100	250	450		
回收	1	1100	250	450		
回收	1	1100	250	450		
水洗 1	1	1100	250	450		
水洗 2	1	1100	250	450		
鍍錫	1	1100	1680	450	1100	450
水洗 1	1	1100	250	450		
水洗 2	1	1100	250	450		
水洗 3	1	1100	250	450		
水洗 4	1	1100	250	450		
水洗 1	1	1100	540	450		
水洗 2	1	1100	540	450		
水洗 3	1	1100	540	450		
水洗 4	1	1100	500	450		
整流器	56 臺					
超聲波發生器	4 臺					
過濾機	11 臺					

	电解脱脂 1	1	1120	600	450	1120	450
	电解脱脂 2	1	1120	560	500	1120	450
	电解脱脂 3	1	1120	560	500	1120	450
	电解脱脂 4	1	1120	560	500	1120	450
	回收	1	1120	220	500	1120	730
		1	1120	560	500	1120	450
	水洗 1	1	1120	220	500	1120	730
	水洗 2	1	1120	220	500		
	水洗 3	1	1120	220	500		
	 活化	1	1120	560	500	1120	450
	水洗 1	1	1120	220	500	1120	430
	水洗 2	1	1120	220	500		
	水洗 3	1	1120	220	500		
		1	1120	560	500	1120	450
	预镀镍 2	1	1120	400	420	1120	450
	回收	1	1100	220	500	1120	430
	水洗 1	1	1100	220	500		
	水洗 2 预镀镍	1	1100 900	220	500 490	1120	450
		1		350		1120	
17#端子连续	普通镍 1	1	1120	1520	500	1120	450
镀镍锡自动	普通镍 2 回收	1	1120	1520	500	1120	450
线		1	1120	220	500		
	回收 並通線 2	1	1120	220	500	1120	450
	普通镍3	1	1140	820	520	1120	450
	回收	1	1120	220	500		
	回收	1	1120	220	500	1120	450
	高温镍	1	1120	560	500	1120	450
	回收	1	1120	220	500		
	回收	1	1120	220	500		
	回收	1	1120	220	500		
	回收	1	1120	220	500		
	回收	1	1120	220	500		
	回收	1	1120	220	500		
	水洗 1	1	1120	220	500		
	水洗 2	1	1120	220	500		
	水洗 3	1	1120	220	500	1120	450
	镀锡	1	1120	1200	500	1120	450
	水洗 1	1	1120	220	500		
	水洗 2	1	1120	220	500		
	水洗 3	1	1120	220	500		
	水洗 1	1	1120	220	500		
	水洗 2	1	1120	220	500		

	水洗 3	1	1120	220	500		
	水洗 1	1	1120	400	500		
	水洗 2	1	1120	400	500		
	水洗 3	1	1120	400	500		
	水洗 1	1	780	220	500		
	水洗 2	1	780	220	360		
	水洗 3	1	780	220	360		
	整流器	42 台					
	超声波发生器	6 台					
	过滤机	8台					
	冷冻机	1台					
	电解脱脂 1		1120	600	450	1120	450
	电解脱脂 2	1	1120	560	500	1120	450
	电解脱脂 3	1	1120	560	500	1120	450
	电解脱脂 4	1	1120	560	500	1120	450
	回收	1	1120	220	500		
	电解脱脂 5	1	1120	560	500	1120	450
	 水洗 1	1	1120	220	500		
	水洗 2	1	1120	220	500		
	水洗 3	1	1120	220	500		
	活化	1	1120	560	500	1120	450
	水洗 1	1	1120	220	500		
	 水洗 2	1	1120	220	500		
	水洗 3	1	1120	220	500		
		1	1120	560	500	1120	450
18#端子连续	预镀镍 2	1	1120	400	420	1120	450
镀镍锡自动	回收	1	1100	220	500		
线	水洗 1	1	1100	220	500		
·	水洗 2	1	1100	220	500		
_	预镀镍	1	900	350	490	1120	450
	普通镍1	1	1120	1520	500	1120	450
	普通镍 2	1	1120	1520	500	1120	450
	回收	1	1120	220	500		
	回收	1	1120	220	500		
_	普通镍3	1	1140	820	520	1120	450
	回收	1	1120	220	500		
		1	1120	220	500		
	 高温镍	1	1120	560	500	1120	450
	回收	1	1120	220	500		
		1	1120	220	500		
	回收	1	1120	220	500		
-	回收	1	1120	220	500		

	FI I/A	1	1120	220	500		
	回收 回收	1	1120 1120	220 220	500		
	水洗 1	1	1120	220	500		
	水洗 2	1	1120	220	500		
	水洗 3	1	1120	220	500		
	镀锡	1	1120	1200	500	1120	450
	水洗 1	1	1120	220	500	1120	730
	水洗 2	1	1120	220	500		
	水洗 3	1	1120	220	500		
	水洗 1	1	1120	220	500		
	水洗 2	1	1120	220	500		
	水洗 3	1	1120	220	500		
	水洗 1	1	1120	450	500		
	水洗 2	1	1120	400	500		
	水洗 3	1	1120	400	500		
	水洗 1	1	1120	450	500		
	水洗 2	1	780	220	360		
	水洗 3	1	780	220	360		
	整流器	42 台	, , ,		200		
	超声波发生器	6台					
	过滤机	8台					
	冷冻机	1台					
	超聲波脫脂 1	1	600	600	800	1180	380
	超聲波脫脂 2	1	700	700	750	1180	380
	水洗 1	1	580	220	440		
	水洗 2	1	580	220	440		
	超聲波脫脂3	1	780	540	380	1180	380
	电解脱脂 1	1	780	540	380	1180	380
	电解脱脂 2	1	780	540	380	1180	380
	水洗 1	1	1180	180	380		
19#端子连续	水洗 2	1	1180	180	380		
镀铜镍锡金	水洗 3	1	1180	180	380		
自动线	活化	1	450	450	500	1180	380
目郊线	水洗 1	1	450	220	500		
	水洗 2	1	450	220	500		
	水洗 3	1	450	220	500		
	水洗 4	1	450	220	500		
	預鍍鎳	1	780	540	380	1180	380
	水洗 1	1	1180	180	380		
	水洗 2	1	1180	180	380		
	水洗 3	1	1180	180	380		
	酸铜	1	600	720	600	1180	380
120							

	-L-VH 1	1	5.00	250	500		
	水洗 1	1	560	250	580		
	水洗 2	1	560	250	580		
	水洗 3	1	560	250	580		
	水洗 4	1	900	230	530		
	水洗 5	1	900	230	530		
	普通镍1	1	780	540	380	1180	380
	普通镍 2	1	770	540	380	1180	380
	回收	1	1180	270	380		
	回收	1	1180	270	380		
	光亮镍	1	1100	700	650	1180	380
	預鍍鎳	1	1570	430	600	1180	380
	普通镍	1	1020	430	560	1180	380
	水洗 1	1	1180	180	380		
	水洗 2	1	1180	180	380		
	水洗 3	1	1180	180	380		
	鍍錫	1	980	540	380	1180	380
	水洗 1	1	1180	180	380		
	水洗 2	1	1180	180	380		
	水洗 3	1	1180	180	380		
	镀金	1	980	580	480	1180	380
	回收	1	1180	180	380		
	回收	1	1180	180	380		
	回收	1	1180	180	380		
	水洗 1	1	370	540	380		
	水洗 2	1	1180	180	380		
	水洗 3	1	1180	180	380		
	水洗 4	1	1180	180	380		
	熱水洗 5	1	780	270	380		
	熱水洗 6	1	780	270	380		
	整流器	12 臺					
	超聲波發生器	1臺					
	過濾機	6臺					
	热浸脱脂	1	2600	1500	1200		
	水洗	1	2600	700	1200		
	超声波脱脂	1	2600	800	1200		
	水洗 1	1	2600	700	1200		
20#挂镀镍铬	水洗 2	1	2600	700	1200		
半自动线	电解脱脂	1	2600	1200	1200		
	水洗 1	1	2600	700	1200		
	水洗 2	1	2600	700	1200		
	水洗 3	1	2600	700	1200		
	活化	1	2600	1200	1200		
121	, H 10			1 1200	1200		

	 水洗 1	1	2600	520	1200		
-	水洗 2	1	2600	520	1200		
-	水洗 3	1	2600	520	1200		
-	 电解脱脂	1	2600	1200	1200		
-	水洗 1	1	2600	700	1200		
-		1	2600	700	1200		
-	水洗 3	1	2600	700	1200		
_		+	2600	700	1200		
_	水洗 1	1		700	1200		
_		1	2600				
_	水洗 2	1	2600	700	1200		
_	水洗 3	1	2600	700	1200		
_	预镀镍	1	2600	700	1200		
-	水洗	1	2600	520	1200		
-	普通镍	1	2600	1300	1200		
	普通镍	1	2600	1300	1200		
_	水洗 1	1	2600	700	1200		
	水洗 2	1	2600	700	1200		
_	水洗 3	1	2600	700	1200		
	镀铬	1	2600	700	1200		
	水洗 1	1	2600	700	1200		
	水洗 2	1	2600	700	1200		
	水洗 3	1	2600	700	1200		
	水洗 4	1	2600	700	1200		
	水洗 5	1	2600	700	1200		
	水洗 1	1	2600	700	1200		
	水洗 2	1	2600	700	1200		
	水洗 3	1	2600	700	1200		
	水洗 4	1	2600	700	1200		
	水洗 1	1	2600	700	1200		
	水洗 2	1	2600	700	1200		
	水洗 3	1	2600	800	1200		
	水洗 4	1	2600	800	600		
	整流器	49 臺					
	超聲波發生器	6 臺					
	過濾機	11 臺					
	冷凍機	1臺					
	除油 1	1	1120	560	500	1120	500
	除油 2	1	1120	560	500	1120	500
21#连续镀铜	除油 3	1	1120	560	500	1120	500
镍银自动线	除油 4	1	1120	560	500	1120	500
ļ	回收	1	1120	220	500		
ļ	水洗 1	1	1120	220	500		

水洗 2	1	1120	220	500		
水洗 3	1	1120	220	500		
活化	1	1120	560	500	1120	500
水洗	1	1120	220	500		
活化	1	1120	560	500	1120	500
水洗	1	1120	450	500		
碱铜	1	1120	560	500	1120	500
水洗 1	1	1120	220	500		
水洗 2	1	1120	220	500		
水洗 3	1	1120	220	500		
水洗 4	1	1120	220	500		
酸铜	1	1120	1120	500	1120	500
回收	1	1120	220	500		
水洗 1	1	1120	440	500		
水洗 2	1	1120	440	500		
普通镍	1	1120	1520	500	1120	500
水洗 1	1	1120	450	500		
水洗 2	1	1120	220	500		
水洗 3	1	1120	220	500		
水洗 4	1	1120	220	500		
活化	1	1120	560	500	1120	500
水洗 1	1	1120	220	500		
水洗 2	1	1120	220	500		
水洗 3	1	1120	220	500		
水洗 4	1	1120	220	500		
預鍍銀	1	1120	560	500	1120	500
回收	1	1120	660	500		
镀银1	1	1120	1100	500	1120	500
镀银 2	1	1120	1100	500	1120	500
水洗 1	1	1120	220	500		
水洗 2	1	1120	220	500		
水洗 3	1	1120	220	500		
水洗 4	1	1120	440	500		
脫銀 1	1	1120	560	500	1120	500
脫銀 2	1	1120	560	500	1120	500
水洗 1	1	1120	220	500		
水洗 2	1	1120	440	500		
銀保護	1	1120	560	500	1120	500
水洗 1	1	1120	560	500		
水洗 2	1	1120	560	500		
水洗 3	1	1120	560	500		
 水洗 1	1	1120	220	500		

	水洗 2	1	1120	220	500		
	水洗 3	1	1120	220	500		
	水洗 4	1	1120	220	500		
	整流器	49 臺					
	超聲波發生器	4 臺					
	過濾機	8臺					
	冷凍機	1臺					
	除油 1	1	1120	560	500	1120	500
	除油 2	1	1120	560	500	1120	500
	除油 3	1	1120	560	500	1120	500
	除油 4	1	1120	560	500	1120	500
	回收	1	1120	300	500		
	水洗 1	1	1120	300	500		
	水洗 2	1	1120	300	500		
	活化	1	1120	560	500	1120	500
	水洗 1	1	1120	300	500		
	水洗 2	1	1120	300	500		
	水洗 3	1	1120	300	500		
	普通镍	1	1640	1300	450	1120	500
	普通镍	1	1640	1300	450	1120	500
	回收	1	1120	300	500		
	回收	1	1120	300	500		
	水洗 1	1	1120	300	500		
22#端子连续	水洗 2	1	1120	300	500		
镀镍钯金铑	刷镀钯	1	1120	1000	500	1120	500
钉自动线	回收	1	1120	300	500		
	回收	1	1120	300	500		
	水洗 1	1	1120	300	500		
	水洗 2	1	1120	300	500		
	鍍金	1	1120	1000	500	1120	500
	回收	1	1120	300	500		
	回收	1	1120	300	500		
	水洗 1	1	1120	300	500		
-	水洗 2	1	1120	300	500		
	鍍銠釕	1	1550	1300	500	1120	500
	回收	1	1300	390	450		
	回收	1	1300	390	450		
	水洗 1	1	1300	310	450		
	水洗 2	1	1300	310	450		
	水洗 3	1	1300	310	450		
	水洗 4	1	1300	310	450		
	水洗 1	1	1300	310	450		

	水洗 2	1	1300	310	450	
	水洗 3	1	1300	320	450	
		1	1100	320	450	
	水洗 5	1	1300	390	450	
	 除油 1	1	1120	560	500	
	 除油 2	1	1120	560	500	
		1	1120	300	500	
		1	1120		500	
	水洗 2 水洗 3		1120	300	500	
		1	/	300	/	
		1				
连续电泳半	電泳	1	1300	800	500	
自动线	水洗 1	1	1300	620	500	
	水洗 2	1	1300	620	500	
	水洗 3	1	1300	620	500	
-	水洗 4	1	1300	620	500	
	水洗 5	1	1300	620	500	
	整流器	8臺				
	過濾機	2臺				
	冷凍機	1臺				
	除油 1	1	1120	560	500	
	除油 2	1	1120	560	500	
	水洗 1	1	1120	300	500	
水转印线	水洗 2	1	1120	300	500	
7000	水洗 3	1	1120	300	500	
	转印	1	1120	1100	500	
	水洗	1	1120	300	500	
	整流器	4 台				
	除油 1	1	1120	560	500	
	水洗	1	1120	300	500	
	除油 2	1	1120	560	500	
	水洗	1	1120	300	500	
	除油 3	1	1120	560	500	
	水洗 1	1	1120	300	500	
22.4由桂柏业	水洗 2	1	1120	300	500	
23#电铸镍半 自动线	水洗 3	1	1120	300	500	
日约以	水洗 4	1	1120	300	500	
	活化	1	1120	560	500	
	水洗 1	1	1120	300	500	
	水洗 2	1	1120	300	500	
	水洗3	1	1120	300	500	
	钝化	1	1120	560	500	
	水洗 1	1	1120	300	500	

	水洗 2	1	1120	300	500	
	水洗 3	1	1120	300	500	
	電鑄鎳 1	2	1640	1300	450	
	電鑄鎳 2	2	1640	1300	450	
	水洗 1	1	1120	300	500	
	水洗 2	1	1120	300	500	
	水洗 3	1	1120	300	500	
	脱膜	1	1120	560		
	水洗 1	1	1120	300	500	
	水洗 2	1	1120	300	500	
	水洗 3	1	1120	300	500	
	預鍍鎳	1	1120	560	500	
	水洗 1	1	1120	300	500	
	水洗 2	1	1120	300	500	
	水洗 3	1	1120	300	500	
	水洗 4	1	1120	300	500	
	酸銅	1	1640	1300	450	
	水洗 1	1	1120	300	500	
	水洗 2	1	1120	300	500	
	水洗 3	1	1120	300	500	
	水洗 4	1	1120	300	500	
	钝化	1	1640	1300	500	
	水洗 1	1	1300	390	500	
	水洗 2	1	1300	390	500	
	水洗 3	1	1300	620	500	
	水洗 4	1	1300	620	500	
	水洗 5	1	1300	620	500	
	水洗 6	1	1300	320	500	
	水洗 7	1	1100	320	500	
	水洗 8	1	1300	390	500	
	整流器	35 臺				
	過濾機	8臺				
	冷凍機	1臺				
	除油	1	1000	800	1000	
	水洗	1	800	800	1000	
	粗化	1	1500	800	1000	
24#塑胶挂镀	水洗 1	1	800	800	1000	
铜镍铬自动	水洗 2	1	800	800	1000	
线	水洗 3	1	800	800	1000	
	还原	1	1500	800	1000	
	水洗 1	1	800	800	1000	
	水洗 2	1	800	800	1000	

水洗3							
水洗		水洗 3	1	800	800	1000	
解胶 1 1500 800 1000 水洗1 1 800 800 1000 水洗2 1 800 800 1000 水洗3 1 800 800 1000 水洗1 1 800 800 1000 水洗1 1 800 800 1000 水洗2 1 800 800 1000 水洗3 1 800 800 1000 水洗1 1 800 800 1000 水洗2 1 800 800 1000 水洗3 1 800 800 1000 水洗2 1 800 800 1000 水洗3 1 800 800 1000 800 800 800 800 800 800		沉钯	1	1500	800	1000	
水洗1 1 800 800 1000 水洗2 1 800 800 1000 化学镍 1 3000 800 1000 水洗1 1 800 800 1000 水洗2 1 800 800 1000 水洗3 1 800 800 1000 水洗4 1 800 800 1000 水洗1 1 800 800 1000 水洗3 1 800 800 1000 水洗1 1 800 800 1000 水洗3 1 800 800 1000 <td></td> <td>水洗</td> <td>1</td> <td>800</td> <td>800</td> <td>1000</td> <td></td>		水洗	1	800	800	1000	
水洗2 1 800 800 1000 化学镍 1 3000 800 1000 水洗1 1 800 800 1000 水洗3 1 800 800 1000 水洗3 1 800 800 1000 水洗4 1 800 800 1000 水洗1 1 800 800 1000 水洗2 1 800 800 1000 水洗3 1 800 800 1000 水洗3 1 800 800 1000 水洗3 1 800 800 1000 水洗1 1 800 800 1000 水洗3 1 800 800 1000 水洗3 1 800 800 1000 水洗3 1 800 800 1000 水洗1 1 800 800 1000 水洗3 1 800 800 1000 水洗1 1 800 <		解胶	1	1500	800	1000	
 化学線 1 3000 800 1000 水洗 1 1 800 800 1000 水洗 2 1 800 800 1000 水洗 3 1 800 800 1000 水洗 4 1 800 800 1000 水洗 4 1 800 800 1000 水洗 1 1 800 800 1000 水洗 2 1 800 800 1000 水洗 1 1 800 800 1000 水洗 1 1 800 800 1000 水洗 1 1 800 800 1000 水洗 2 1 800 800 1000 水洗 2 1 800 800 1000 水洗 3 1 800 800 1000 水洗 1 1 800 800 1000 水洗 2 1 800 800 1000 水洗 2 1 800 800 1000 水洗 2 1 800 800 1000 水洗 1 450 600 400 水洗 1 450 600 400 		水洗 1	1	800	800	1000	
水洗 1		水洗 2	1	800	800	1000	
水洗 2		化学镍	1	3000	800	1000	
水洗 3		水洗 1	1	800	800	1000	
水洗4 1 800 800 1000 镀镍 1 3000 800 1000 水洗1 1 800 800 1000 水洗3 1 800 800 1000 水洗3 1 800 800 1000 水洗1 1 800 800 1000 水洗2 1 800 800 1000 水洗3 1 800 800 1000 水洗3 1 800 800 1000 水洗3 1 800 800 1000 水洗1 1 800 800 1000 水洗2 1 800 800 1000 水洗3 1 800 800 1000 水洗3 1 800 800 1000 水洗3 1 800 800 1000 水洗1 1 800 800 1000 水洗1 1 800 800 1000 水洗1 1 800 800 1000		水洗 2	1	800	800	1000	
镀镍		水洗 3	1	800	800	1000	
水洗1 1 800 800 1000 水洗2 1 800 800 1000 水洗3 1 800 800 1000 水洗1 1 800 800 1000 水洗2 1 800 800 1000 水洗3 1 800 800 1000 水洗1 1 800 800 1000 水洗1 1 800 800 1000 水洗3 1 800 800 1000 水洗1 1 800 800 1000 水洗1 1 800 800 1000 水洗1 1 800 800 1000 水洗2 1 800 800 1000 水洗2 1 800 800 1000 水洗1 1 800 800 1000		水洗 4	1	800	800	1000	
水洗 2 1 800 800 1000 水洗 3 1 800 800 1000 酸铜 1 3000 800 1000 水洗 1 1 800 800 1000 水洗 3 1 800 800 1000 水洗 1 1 800 800 1000 水洗 2 1 800 800 1000 水洗 3 1 800 800 1000 水洗 3 1 800 800 1000 水洗 4 1 800 800 1000 水洗 1 1 800 800 10		镀镍	1	3000	800	1000	
水洗3 1 800 800 1000 酸铜 1 3000 800 1000 水洗1 1 800 800 1000 水洗3 1 800 800 1000 水洗3 1 800 800 1000 水洗1 1 800 800 1000 水洗2 1 800 800 1000 水洗3 1 800 800 1000 水洗3 1 800 800 1000 水洗3 1 800 800 1000 水洗1 1 800 800 1000 水洗2 1 800 800 1000 水洗1 1 800 800 1000 水洗2 1 800 800 1000		水洗 1	1	800	800	1000	
酸铜 1 3000 800 1000 水洗1 1 800 800 1000 水洗2 1 800 800 1000 水洗3 1 800 800 1000 水洗1 1 800 800 1000 水洗2 1 800 800 1000 水洗3 1 800 800 1000 水洗3 1 800 800 1000 水洗1 1 800 800 1000 水洗1 1 800 800 1000 水洗1 1 800 800 1000 水洗2 1 800 800 1000 水洗1 1 800 800 1000 水洗2 1 800 800 1000 水洗3 1 800 800 1000 水洗2 1 800 800 1000 水洗3 1 800 800 1000 水洗3 1 800 800 1000		水洗 2	1	800	800	1000	
水洗 1 1 800 800 1000 水洗 2 1 800 800 1000 水洗 3 1 800 800 1000 普通镍 1 3000 800 1000 水洗 1 1 800 800 1000 水洗 2 1 800 800 1000 水洗 3 1 800 800 1000 水洗 1 1 800 800 1000 水洗 1 1 800 800 1000 水洗 1 1 800 800 1000 水洗 2 1 800 800 1000 水洗 1 1 600 500 7		水洗 3	1	800	800	1000	
水洗 2 1 800 800 1000 水洗 3 1 800 800 1000 普通镍 1 3000 800 1000 水洗 1 1 800 800 1000 水洗 3 1 800 800 1000 水洗 3 1 800 800 1000 水洗 1 1 800 800 1		酸铜	1	3000	800	1000	
水洗 3 1 800 800 1000 普通镍 1 3000 800 1000 水洗 1 1 800 800 1000 水洗 2 1 800 800 1000 水洗 3 1 800 800 1000 水洗 1 1 800 800 1000 水洗 2 1 800 800 1000 水洗 1 1 800 800 1000 水洗 2 1 800 800 1000 水洗 1 1 800 800 1000 整流器 20 臺		水洗 1	1	800	800	1000	
普通镍 1 3000 800 1000 水洗1 1 800 800 1000 水洗2 1 800 800 1000 水洗3 1 800 800 1000 水洗3 1 800 800 1000 水洗1 1 800 800 1000 水洗2 1 800 800 1000 水洗1 1 800 800 1000 水洗2 1 800 800 1000 水洗1 1 800 800 1000 整流器 20臺 20臺 20臺 20臺 海濾機 10臺 20臺 20臺 20臺 冷凍機 1 臺 20 20 20 下海 1 600 500 700 水洗1 1 600 500 700		水洗 2	1	800	800	1000	
水洗 1 1 800 800 1000 水洗 2 1 800 800 1000 水洗 3 1 800 800 1000 坡三价铬 1 3000 800 1000 水洗 1 1 800 800 1000 整流器 20 臺 20 臺 20 臺 20 臺 20 臺 20 臺 超離機 10 臺 20 臺 <t< td=""><td></td><td>水洗 3</td><td>1</td><td>800</td><td>800</td><td>1000</td><td></td></t<>		水洗 3	1	800	800	1000	
水洗 2 1 800 800 1000 水洗 3 1 800 800 1000 镀三价铬 1 3000 800 1000 水洗 1 1 800 800 1000 水洗 1 1 800 800 1000 水洗 2 1 800 800 1000 水洗 1 1 800 800 1000 水洗 1 1 800 800 1000 整流器 20 臺 20		普通镍	1	3000	800	1000	
水洗3 1 800 800 1000 镀三价铬 1 3000 800 1000 水洗1 1 800 800 1000 水洗2 1 800 800 1000 水洗1 1 800 800 1000 水洗1 1 800 800 1000 水洗1 1 800 800 1000 整流器 20臺 20臺 超離機 10臺 20臺 冷凍機 1臺 20 除油1 1 600 500 700 除油2 1 600 500 700 水洗 1 450 600 400 水洗 1 450 600 400		水洗 1	1	800	800	1000	
接三价铬 1 3000 800 1000		水洗 2	1	800	800	1000	
水洗 1 1 800 800 1000 水洗 2 1 800 800 1000 水洗 1 1 800 800 1000 水洗 1 1 800 800 1000 水洗 1 1 800 800 1000 整流器 20臺 20臺 20臺 20臺 超聲波發生器 10臺 20臺 20臺 20臺 冷凍機 1臺 20臺 20 20 冷凍機 1臺 20 20 20 水洗 1 600 500 700 20 水洗 1 450 600 400 400 水洗 1 450 600 400 400		水洗3	1	800	800	1000	
水洗 2 1 800 800 1000 水洗 1 1 800 800 1000 水洗 2 1 800 800 1000 水洗 1 1 800 800 1000 整流器 20臺 20臺 20臺 20臺 超聲波發生器 10臺 20臺 20臺 20臺 冷凍機 1臺 20臺 20臺 20臺 冷凍機 1臺 20臺 20臺 20臺 冷凍機 1 臺 20臺 20臺 20臺 20臺 冷凍機 1 臺 20臺 20臺 20臺 20臺 20臺 冷凍機 1 臺 20臺 20臺 20臺 20		镀三价铬	1	3000	800	1000	
水洗 1 1 800 800 1000 水洗 2 1 800 800 1000 水洗 1 1 800 800 1000 整流器 20 臺 20 臺 20 臺 20 臺 超聲波發生器 10 臺 20 臺 20 臺 20 臺 20 臺 海濾機 10 臺 20 臺 </td <td></td> <td>水洗 1</td> <td>1</td> <td>800</td> <td>800</td> <td>1000</td> <td></td>		水洗 1	1	800	800	1000	
水洗 2 1 800 800 1000 水洗 1 1 800 800 1000 整流器 20臺 超聲波發生器 10臺 過濾機 10臺 冷凍機 1臺 除油 1 1 600 500 700 除油 2 1 600 500 700 水洗 1 450 600 400 水洗 1 450 600 400		水洗 2	1	800	800	1000	
水洗 1 1 800 800 1000 整流器 20 臺 超聲波發生器 10 臺 過濾機 10 臺 冷凍機 1 臺 除油 1 1 600 500 700 除油 2 1 600 500 700 水洗 1 450 600 400 水洗 1 450 600 400		水洗 1	1	800	800	1000	
整流器 20 臺 超聲波發生器 10 臺 過濾機 10 臺 冷凍機 1 臺 除油 1 1 600 500 700 除油 2 1 600 500 700 水洗 1 450 600 400 水洗 1 450 600 400		水洗 2	1	800	800	1000	
超聲波發生器 10 臺 過濾機 10 臺 冷凍機 1 臺 除油 1 1 600 500 700 除油 2 1 600 500 700 水洗 1 450 600 400 水洗 1 450 600 400		水洗 1	1	800	800	1000	
過濾機 10 臺 冷凍機 1 臺 除油 1 1 600 500 700 除油 2 1 600 500 700 水洗 1 450 600 400 水洗 1 450 600 400		整流器	20 臺				
冷凍機 1臺 除油 1 1 600 500 700 除油 2 1 600 500 700 水洗 1 450 600 400 研磨手动线 水洗 1 450 600 400		超聲波發生器	10 臺				
除油 1 1 600 500 700 除油 2 1 600 500 700 水洗 1 450 600 400 研磨手动线 水洗 1 450 600 400		過濾機	10 臺				
除油 2 1 600 500 700 水洗 1 450 600 400 水洗 1 450 600 400		冷凍機	1 臺				
TypeC 滚筒 水洗 1 450 600 400 研磨手动线 水洗 1 450 600 400		除油 1	1	600	500	700	
TypeC 滚筒 水洗 1 450 600 400		除油 2	1	600	500	700	
研磨手动线 水洗 1 450 600 400	TymeCi添焙	水洗	1	450	600	400	
水洗 1 450 600 400		水洗	1	450	600	400	
	明石丁ሣ线	水洗	1	450	600	400	
研磨机 3 台		研磨机	3 台				
甩乾机 1台		甩乾机	1台				
C70 滚筒研 除油 1 500 500 500	C70 滚筒研	除油 1	1	500	500	500	
磨手动线 除油 2 1 500 500 500	磨手动线	除油 2	1	500	500	500	

	除油 3	1	500	500	500	
	水洗	1	450	600	400	
	水洗	1	450	600	400	
	水洗	1	450	600	400	
		1	4 台			
	甩乾机	1	1台			
	除油 1	1	500	500	400	
	除油 2	1	500	500	400	
	除油 3	1	500	500	400	
	水洗	1	450	600	400	
散件清洗手 一	水洗	1	450	450	550	
动线 —	水洗	1	450	450	550	
	水洗	1	450	450	550	
	水洗	1	450	450	550	
	 甩乾机	2台				
	<u></u> 除油 1	1	600	600	900	
	除油 2	1	700	700	750	
	水洗	1	450	600	500	
磁力研磨手 磁力研磨手	磁力研磨	1	10 台	500	200	
动线	水洗	1	450	600	500	
_	水洗	1	450	600	500	
_	超聲波水洗	1	600	550	500	
		2 台	000	330	200	
	超聲波除油	1	1000	1050	700	
	超聲波除油	1	1000	500	700	
	水洗 1	1	1000	1050	700	
	水洗 2	1	1000	250	700	
_	水洗 3	1	1000	250	700	
_	水洗 4	1	1000	250	700	
_	活化	1	1000	250	700	
_	水洗 1	1	1000	250	700	
25#滚镀铜镍	水洗 2	1	1000	250	700	
金锡半自动	水洗 3	1	1000	250	700	
线	水洗 4	1	1000	250	700	
	碱铜	1	1000	1050	700	
	水洗 1	1	1000	250	700	
	水洗 2	1	1000	250	700	
	水洗 3	1	1000	250	700	
	水洗 4	1	1000	250	700	
	活化	1	1000	250	700	
	水洗 1	1	1000	250	700	
	水洗 2	1	1000	250	700	

水洗 3	1	1000	250	700	
預鍍鎳	1	1000	500	700	
水洗 1	1	1000	250	700	
水洗 2	1	1000	250	700	
水洗 3	1	1000	250	700	
普通镍	1	1000	1500	700	
水洗 1	1	1000	250	700	
水洗 2	1	1000	250	700	
水洗 3	1	1000	250	700	
水洗 4	1	1000	250	700	
鍍金	1	1000	500	700	
回收	1	1000	250	700	
水洗 1	1	1000	250	700	
水洗 2	1	1000	250	700	
水洗 3	1	1000	250	700	
鍍錫	1	1000	1050	700	
水洗 1	1	1000	500	700	
水洗 2	1	1000	500	700	
水洗 3	1	1000	500	700	
水洗 4	1	1000	500	700	
水洗 5	1	1000	500	700	
整流器	11 台				
過濾機	6 台				
冷凍機	1台				
超聲波發生器	2 台				

4.1.6 产品方案

技改扩建后项目的产品方案如下:

表 4.1-7 技改扩建后项目生产规模

	电镀线名称 镀层组合 镀种 电镀面积(万 m2/a) 镀层厚度(μm) 产品外层电镀面积(万 m2/a) 普通镍 4.4 2.5 高温镍 4.4 0.25 金 0.2 0.3 锡 2.7 3.75 普通镍 4.4 2.5							
电镀线名称	镀层组合	镀种	电镀面积(万 m2/a)	镀层厚度(μm)	产品外层电镀面积(万 m2/a)	镀层金属的重 量		
		普通镍	4.4	2.5		0.99		
14端乙冻结缔组入组白动化	镍+金+锡	高温镍	4.4	0.25	4.4	0.10		
1#姉丁廷续拔铼並物目列线		金	0.2	0.3	4.4	0.01		
		锡	2.7	3.75		0.65		
		普通镍	4.4	2.5		0.99		
2#端子连续镀镍金锡自动线	镍+金+锡	高温镍	4.4	0.25	4.4	0.10		
2#姉丁廷续拔铢並物目幼线		金	0.2	0.3	4.4	0.01		
		锡	2.7	3.75		0.65		
	镍+金+锡	普通镍	4.4	2.5		0.99		
3#端子连续镀镍金锡自动线		高温镍	4.4	0.25	4.4	0.10		
5#姍] 赶续搬张亚物目列线	採 並 物	金	0.2	0.3	4.4	0.01		
		锡	2.7	3.75		0.65		
		普通镍	4.4	2.5		0.99		
4#端子连续镀镍金锡自动线	镍+金+锡	高温镍	4.4	0.25	4.4	0.10		
4#細] 足续饭味並物日幼蚁		金	0.2	0.3	4.4	0.01		
		锡	2.7	3.75		0.65		
		普通镍	4.4	2.5		0.99		
5#端子连续镀镍金锡自动线	镍+金+锡	高温镍	4.4	0.25	4.4	0.10		
		金	0.2	0.3		0.01		

		锡	2.7	3.75		0.65
		预镀镍	2.2	0.2		0.04
		酸铜	2.2	0.5		0.10
6#端子连续镀铜镍金锡自动线	镍+铜+金+	普通镍	4.4	2.5	4.4	0.99
0#姉丁连续競擇集並物目幼线	锡	高温镍	4.4	0.25	4.4	0.10
		金	0.2	0.3		0.01
		锡	2.7	3.75		0.65
	镍+金+锡	普通镍	4.4	2.5		0.99
7#端子连续镀镍金锡自动线		高温镍	4.4	0.25	4.4	0.10
/#姍] 足续饭铢並物目砌线		金	0.2	0.3	4.4	0.01
		锡	2.7	3.75		0.65
	镍+金+锡	预镀镍	0.2	0.2		0.00
		普通镍	4.4	2.5		0.99
8#端子连续镀镍钯金锡自动线		高温镍	4.4	0.25	4.4	0.10
		金	0.2	0.3		0.01
		锡	2.7	3.75		0.65
		预镀镍	0.2	0.2		0.00
		普通镍	4.4	2.5		0.99
9#端子连续镀镍钯金锡自动线	镍+金+锡	高温镍	4.4	0.25	4.4	0.10
		金	0.2	0.3		0.01
		锡	2.7	3.75		0.65
		预镀镍	0.2	0.2		0.00
10#端子连续镀镍钯金锡自动线	镍+金+锡	普通镍	4.4	2.5	A A	0.99
10#圳丁廷头损保忧盂物目列线	保+壶+物 	高温镍	4.4	0.25	4.4	0.10
		金	0.2	0.3		0.01

		锡	2.7	3.75		0.65
		预镀镍	0.2	0.2		0.00
		普通镍	4.4	2.5		0.99
11#端子连续镀镍钯金锡自动线	镍+金+锡	高温镍	4.4	0.25	4.4	0.10
		金	0.2	0.3		0.01
		锡	2.7	3.75		0.65
		预镀镍	0.2	0.2		0.00
		普通镍	4.4	2.5		0.99
12#端子连续镀镍钯金锡自动线	镍+金+锡	高温镍	4.4	0.25	4.4	0.10
		金	0.2	0.3		0.01
		锡	2.7	3.75		0.65
	镍+金+锡	预镀镍	0.2	0.2		0.00
		普通镍	4.4	2.5		0.99
13#端子连续镀镍钯金锡自动线		高温镍	4.4	0.25	4.4	0.10
		金	0.2	0.3		0.01
		锡	2.7	3.75		0.65
		预镀镍	0.2	0.2		0.00
		普通镍	4.4	2.5		0.99
14#端子连续镀镍钯金锡自动线	镍+金+锡	高温镍	4.4	0.25	4.4	0.10
		金	0.2	0.3		0.01
		锡	2.7	3.75		0.65
		预镀镍	0.2	0.2		0.00
15#端子连续镀镍钯金锡自动线	镍+金+锡	普通镍	4.4	2.5	4.4	0.99
		高温镍	4.4	0.25		0.10

		金	0.2	0.3		0.01
		锡	2.7	3.75		0.65
		预镀镍	0.2	0.2		0.00
		普通镍	4.4	2.5		0.00
17世子法体缔约师人组占与外	始,人,妇				4.4	
16#端子连续镀镍钯金锡自动线	镍+金+锡	高温镍	4.4	0.25	4.4	0.10
		金	0.2	0.3		0.01
		锡	2.7	3.75		0.65
		预镀镍	6.8	0.2		0.12
17#端子连续镀镍锡自动线	镍+锡	普通镍	6.8	2.5	6.8	1.52
17#姍」足续饭保物目砌线	1大 T20	高温镍	6.8	0.25	0.8	0.15
		锡	6.8	3.75		1.68
	镍+锡	预镀镍	6.8	0.2		0.12
		普通镍	6.8	2.5		1.52
18#端子连续镀镍锡自动线		高温镍	6.8	0.25	6.8	0.15
		锡	6.8	3.75		1.68
		预镀镍	6.8	0.2		0.12
	<i>h</i> 自, <i>h</i> 曰,人,	酸铜	6.8	1		0.61
19#端子连续镀铜镍锡金自动线	镍+铜+金+	普通镍	6.8	2.5	6.8	1.52
	锡	金	0.3	0.075		0.00
		锡	3.4	3.75		0.84
		预镀镍	9.0	0.5		0.40
20#挂镀镍铬半自动线	镍+铬	普通镍	9.0	5	9.0	4.01
		铬	9.0	0.38		0.25
21.2 型子法体连组占品体	始,妇,妇	碱铜	4.3	0.5	4.2	0.19
21#端子连续镀银自动线	镍+铜+银	酸铜	4.3	0.5	4.3	0.19

		普通镍	4.3	0.75		0.29
		银	4.3	2		0.91
22#端子连续镀镍钯金铑钌自动	镍+金	普通镍	4.3	3	4.3	1.15
线		金	2.2	0.3	4.3	0.13
		预镀镍	0.5	0.5		0.02
		酸铜	0.5	0.5		0.02
23#电铸镍半自动线	镍+铜+钝化	电铸镍	0.5	300	0.5	13.36
		镀铬	0.0	0.18		0.00
		钝化	1.0	0.05		0.004
		镀镍	10.0	3		2.67
		酸铜	10.0	11.5		10.30
24#塑胶挂镀铜镍铬自动线	镍+铜+铬	普通镍	10.0	5	10.0	4.45
24#垄拟连坡啊保佑自幼线	1	化学镍	10.0	2	10.0	1.78
		镀三价 铬	10.0	0.2		0.14
		碱铜	5.0	2		0.90
	镍+铜+金+	预镀镍	5.0	0.25		0.11
25#滚镀铜镍金锡半自动线	锡	普通镍	5.0	2	5.0	0.89
	720	金	2.5	0.075		0.02
		锡	2.5	3.75		0.68

表 4.1-8 各电镀生产线生产参数一览表

次 4.1-0 有电极工/ 线工/ 多效 见衣												
电镀线名称	产品名称	每天工作	带速	产品宽	孔隙率	带子数量/	产品距	面积(万				
	,,	时间(min)	,	(mm)		条	离 (mm)	m ² /a)				
1#端子连续镀镍金锡自动线	铜端子	288000	8	8	0.4	2	1	4.42				
2#端子连续镀镍金锡自动线	铜端子	288000	8	8	0.4	2	1	4.42				
3#端子连续镀镍金锡自动线	铜端子	288000	8	8	0.4	2	1	4.42				
4#端子连续镀镍金锡自动线	铜端子	288000	8	8	0.4	2	1	4.42				
5#端子连续镀镍金锡自动线	铜端子	288000	8	8	0.4	2	1	4.42				
6#端子连续镀铜镍金锡自动线	不锈钢、铜端子	288000	8	8	0.4	2	6.5	4.42				
7#端子连续镀镍金锡自动线	铜端子	288000	8	8	0.4	2	1	4.42				
8#端子连续镀镍钯金锡自动线	铜端子	288000	8	8	0.4	2	1	4.42				
9#端子连续镀镍钯金锡自动线	铜端子	288000	8	8	0.4	2	1	4.42				
10#端子连续镀镍钯金锡自动线	铜端子	288000	8	8	0.4	2	1	4.42				
11#端子连续镀镍钯金锡自动线	铜端子	288000	8	8	0.4	2	1	4.42				
12#端子连续镀镍钯金锡自动线	铜端子	288000	8	8	0.4	2	1	4.42				
13#端子连续镀镍钯金锡自动线	铜端子	288000	8	8	0.4	2	1	4.42				
14#端子连续镀镍钯金锡自动线	铜端子	288000	8	8	0.4	2	1	4.42				
15#端子连续镀镍钯金锡自动线	铜端子	288000	8	8	0.4	2	1	4.42				
16#端子连续镀镍钯金锡自动线	铜端子	288000	8	8	0.4	2	1	4.42				
17#端子连续镀镍锡自动线	铁端子	288000	6	10	0.01	2	18.55	6.84				
18#端子连续镀镍锡自动线	铁端子	288000	6	10	0.01	2	18.55	6.84				
19#连续镀铜镍锡金半自动线	铁端子	288000	6	10	0.01	2	18.55	6.84				
20#挂镀镍铬半自动线	铁片	144000		挂 120 片,每片电 50mm2,每天产生	/	/	/	9				

			约	50KPCS				
21#端子连续镀银自动线	铜端子	288000	5	12.5	0.4	2	10	4.32
22#端子连续镀镍钯金铑钌自动 线	铜端子	288000	5	12.5	0.4	2	7	4.32
连续电泳半自动线	铜端子	288000	4	12.5	0.4	2	6.5	4.32
水转印线	五金件	288000	/	/	/	/	/	9.12
23#电铸镍半自动线	电子产品	288000	/	/	/	/	/	0.50
24#塑胶挂镀铜镍铬自动线	ABS 塑胶件	288000		700mm, 42.86 万件	/	/	/	10
TypeC 滚筒研磨手动线	五金件	288000	/	/	/	/	/	4.00
C70 滚筒研磨手动线	五金件	288000	/	/	/	/	/	4.00
散件清洗手动线	五金件	288000	/	/	/	/	/	5.00
磁力研磨手动线	五金件	288000	/	/	/	/	/	6.00
25#滚镀铜镍金锡半自动线	五金件	288000	/	/	/	/	/	5.00

4.1.7 生产工艺及产污环节

技改扩建后,项目生产工艺及产污环节如下:

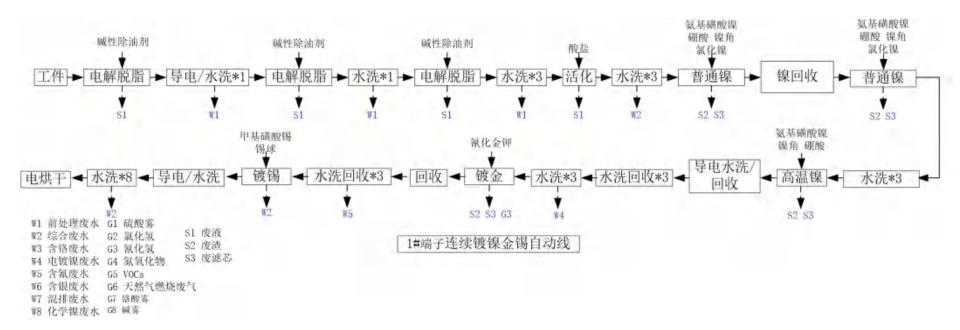


图 4.1-8 1#端子连续镀镍金锡自动线生产工艺及产污环节

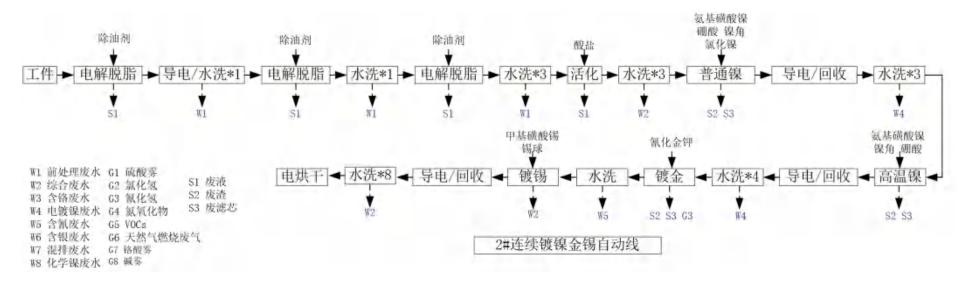
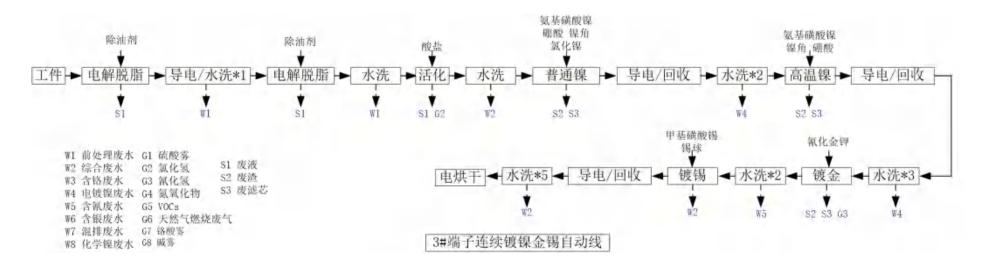



图 4.1-9 2#端子连续镀镍金锡自动线生产工艺及产污环节

图 4.1-10 3#端子连续镀镍金锡自动线生产工艺及产污环节

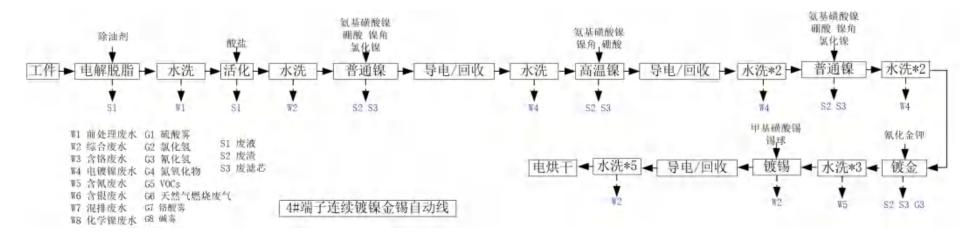


图 4.1-11 4#端子连续镀镍金锡自动线生产工艺及产污环节

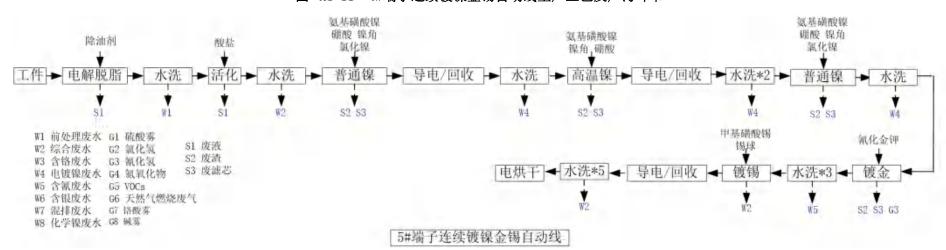


图 4.1-12 5#端子连续镀镍金锡自动线生产工艺及产污环节

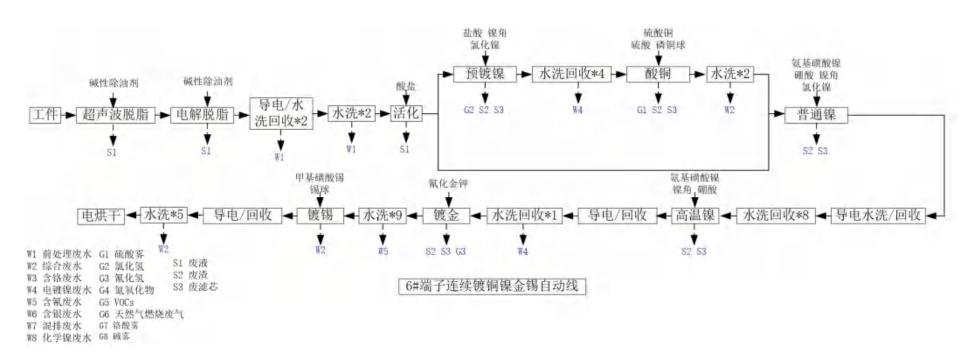


图 4.1-13 6#端子连续镀铜镍金锡自动线生产工艺及产污环节

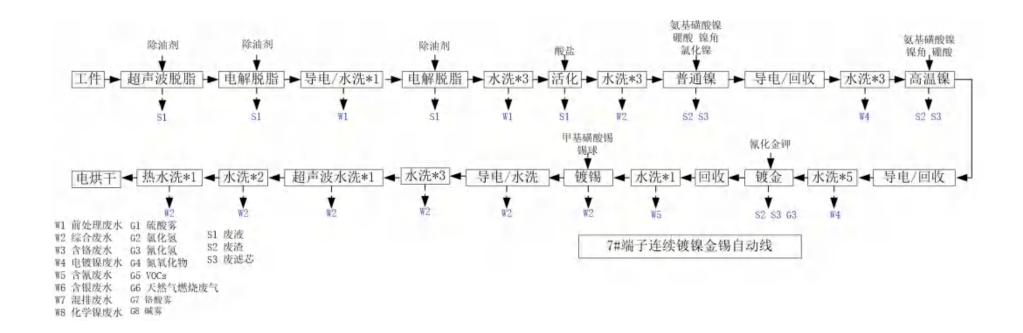


图 4.1-14 7#端子连续镀镍金锡自动线生产工艺及产污环节

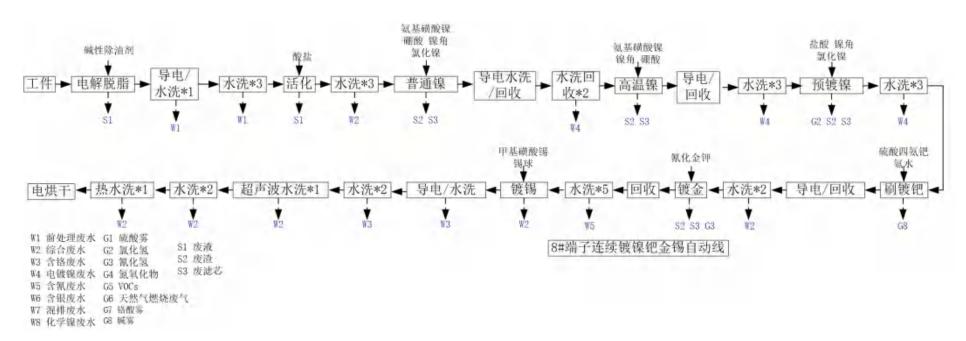


图 4.1-15 8#端子连续镀镍钯金锡自动线生产工艺及产污环节

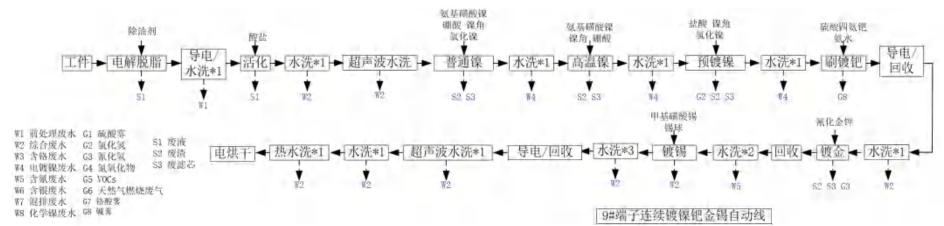


图 4.1-16 9#端子连续镀镍钯金锡自动线生产工艺及产污环节

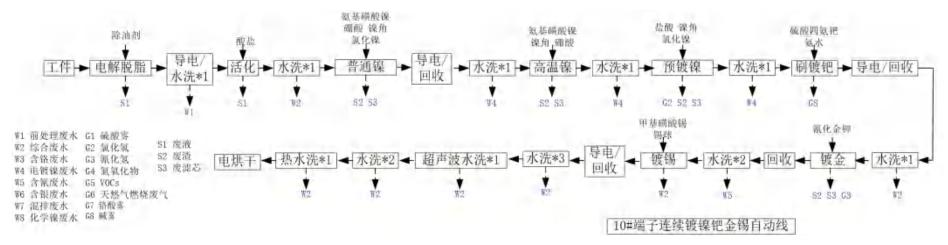


图 4.1-17 10#端子连续镀镍钯金锡自动线生产工艺及产污环节

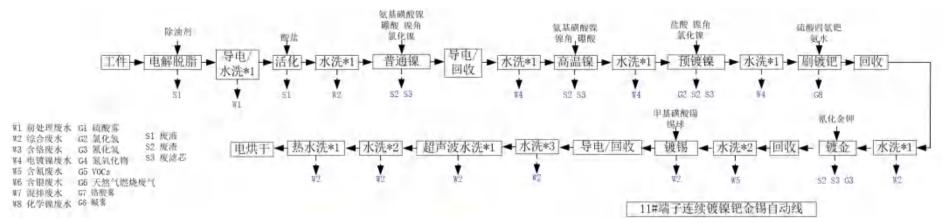


图 4.1-18 11#端子连续镀镍钯金锡自动线生产工艺及产污环节

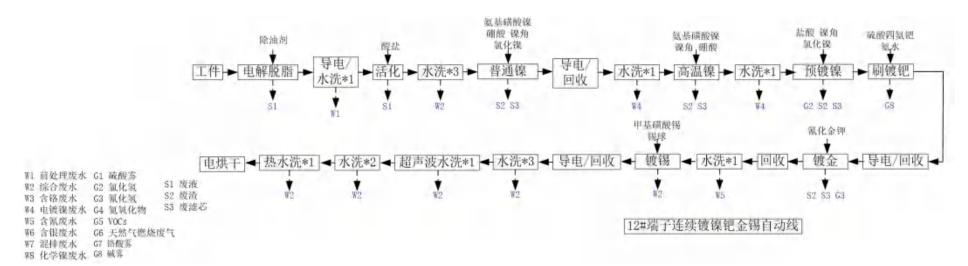


图 4.1-19 12#端子连续镀镍钯金锡自动线生产工艺及产污环节

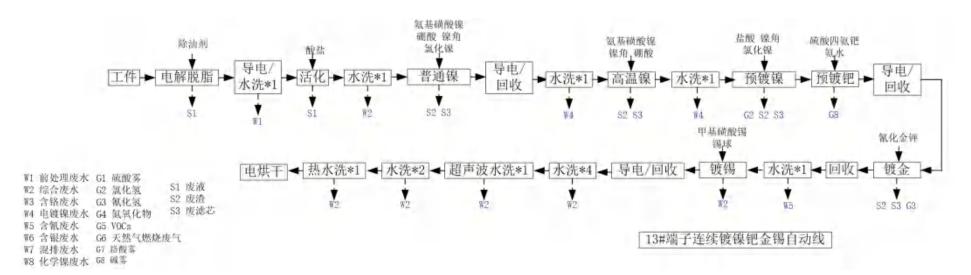


图 4.1-20 13#端子连续镀镍钯金锡自动线生产工艺及产污环节

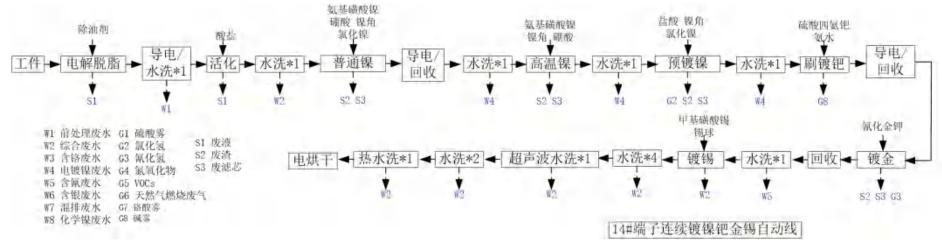


图 4.1-21 14#端子连续镀镍钯金锡自动线生产工艺及产污环节

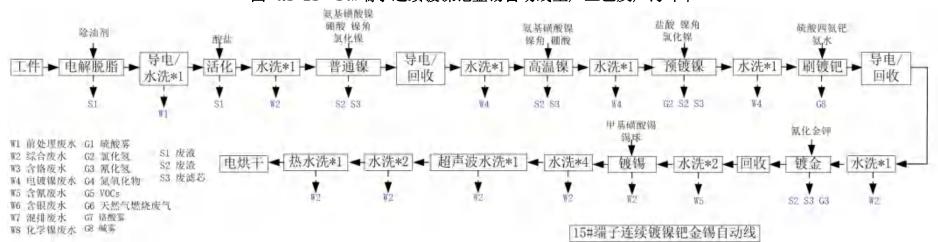


图 4.1-22 15#端子连续镀镍钯金锡自动线生产工艺及产污环节

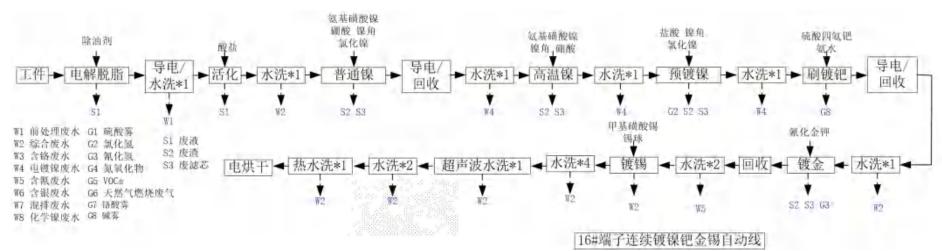


图 4.1-23 16#端子连续镀镍钯金锡自动线生产工艺及产污环节

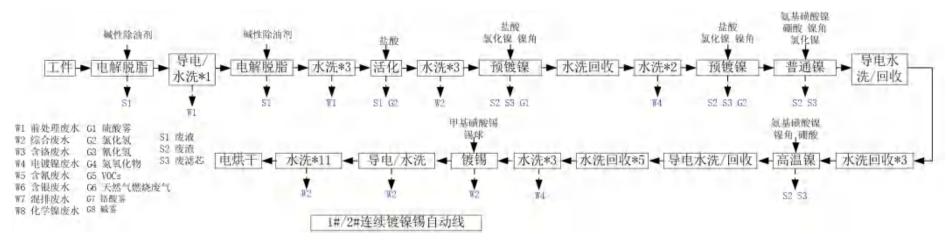


图 4.1-24 17-18#端子连续镀镍锡自动线生产工艺及产污环节

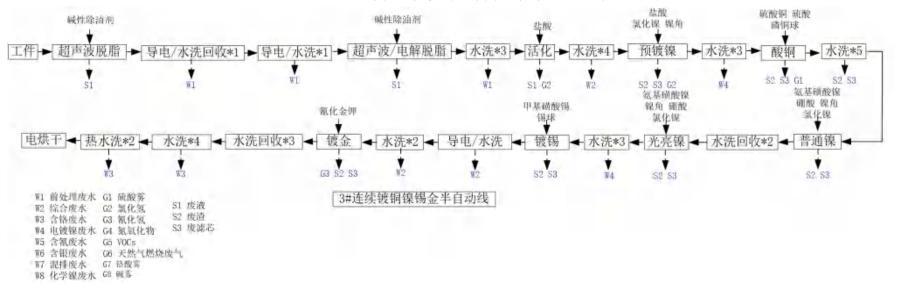


图 4.1-25 19#端子连续镀铜镍锡金自动线生产工艺及产污环节

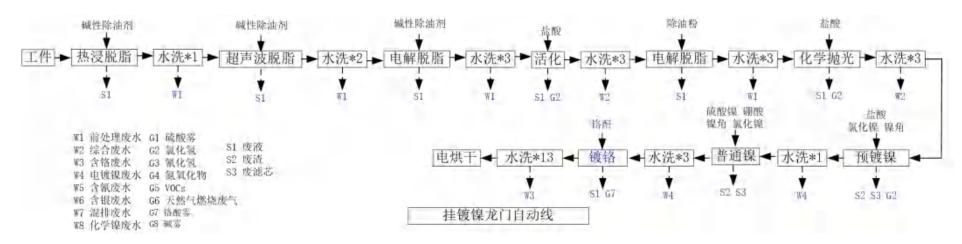


图 4.1-26 20#挂镀镍半自动线生产工艺及产污环节

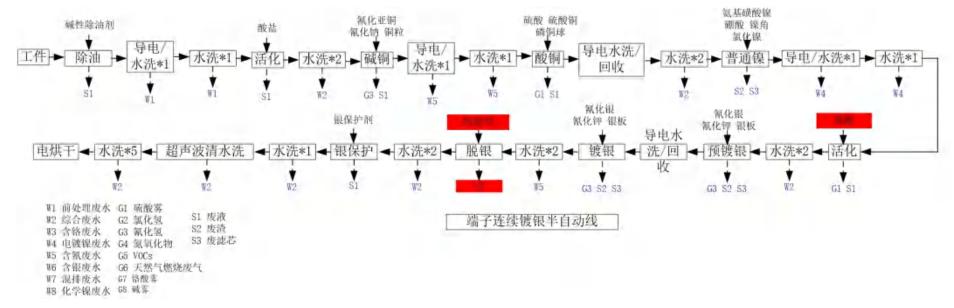


图 4.1-27 21#端子连续镀银自动线生产工艺及产污环节

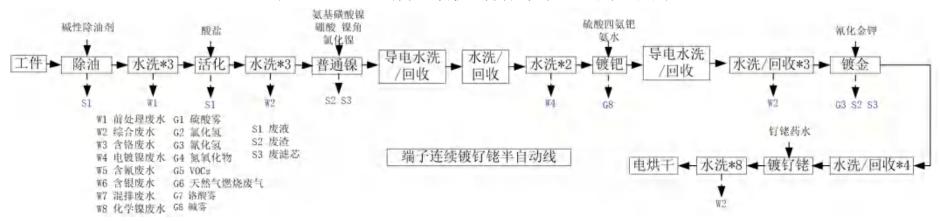


图 4.1-28 22#端子连续镀镍钯金铑钌自动线生产工艺及产污环节

图 4.1-19 连续电泳半自动线生产工艺及产污环节

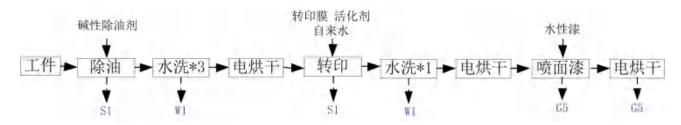


图 4.1-30 水转印线生产工艺及产污环节

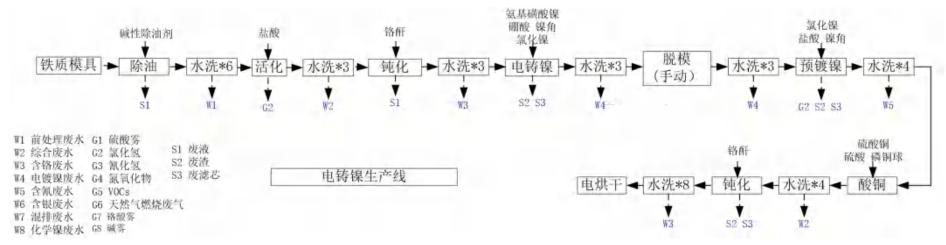


图 4.1-31 23#电铸镍半自动线生产工艺及产污环节

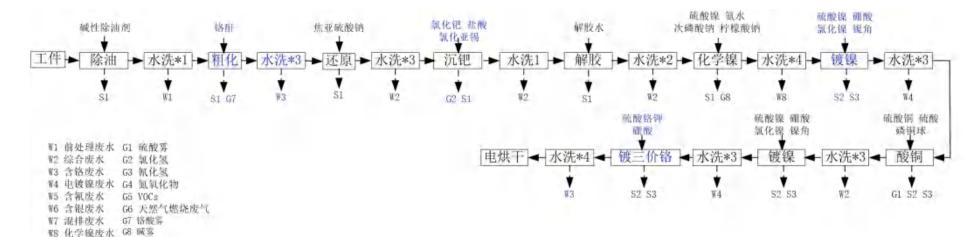


图 4.1-32 24#塑胶挂镀铜镍铬自动线生产工艺及产污环节

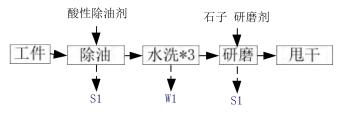


图 4.1-33 TypeC 滚筒研磨手动线生产工艺及产污环节

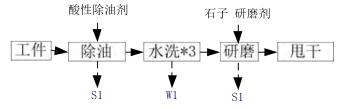


图 4.1-34 C70 滚筒研磨手动线生产工艺及产污环节



图 4.1-35 散件清洗手动线生产工艺及产污环节

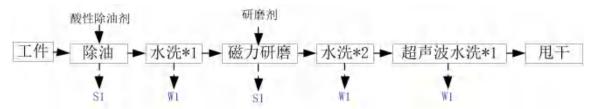


图 4.1-36 磁力研磨手动线生产工艺及产污环节

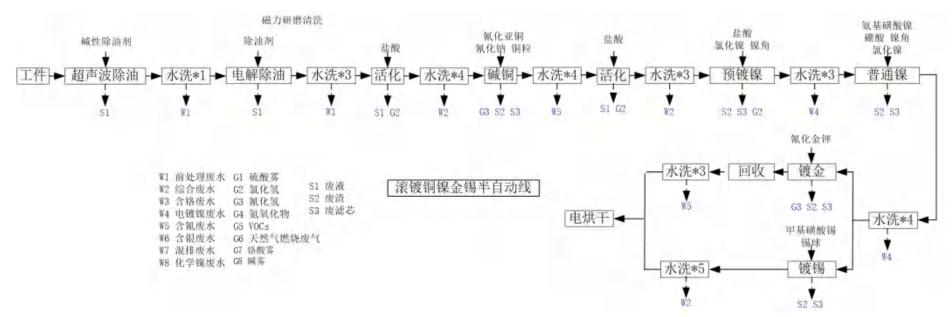


图 4.1-37 25#滚镀铜镍金锡半自动线生产工艺及产污环节

图 4.1-38 纯水制备工艺

工艺流程简介:

- (1)超声波脱脂:超声波除脂是在超声波槽内加入脱脂剂,然后利用超声波在液体中的空化作用、加速度作用及直进流作用对液体和污物直接、间接的作用,使污物层被分散、乳化、剥离而达到清洗目的。主要污染物为废液。
- (2) 电解脱脂: 电解脱脂是在电解槽内加入脱脂剂作为电解液,然后将镀件挂在电解液中,当成是电解槽的阴极或者阳极,利用直流电进行电解,借助电极表面产生的大量气体,将镀件表面的油污除尽在低浓度的脱脂剂溶液中,主要污染物为废液。
- (3) 酸活化/活化:将工件浸泡在硫酸中,除去工件表面上极薄的氧化膜。活化槽定期更换,主要污染物为废液。
- (4) 镀镍: 槽液主要由氯化镍、镍阳极、氨基磺酸镍、硼酸等组成。镀镍是在由镍盐(称主盐)、导电盐组成的电解液中,阳极用金属镍,阴极为镀件,通以直流电,在阴极(镀件)上沉积上一层均匀、致密的镍镀层。此工序电镀液经过滤泵过滤后重复使用,不更换,但过滤泵需定期更换滤芯。产生主要污染物为废滤芯、槽渣。
- (5) 酸洗:采用柠檬酸溶液对镀件表面进行清洗,并去除工件表面的氧化物。主要污染物为废液。
- (6) 镀金: 用氰化亚金钾作为主要镀液在镀件表面电镀一层金,增强底材的耐磨性,改善材料的接触阻抗,在电镀过程中会产生氰化氢。
- (7)回收:工件带出的电镀液进入回收槽内回流到母液槽(不属于电镀废水处理后的回收利用)。
- (8) 金回收:工件带出的电镀液进入回收槽内再通过金回收槽电解后回收金属, 金回收槽定期更换,主要污染物为废液。
- (9) 金剥离:用氰化钾作为金剥离专用液,能剥除所有的金电镀层且不损伤材料, 在金剥离过程中会产生氰化氢
- (10)镀锡:槽液主要由氨基磺酸、硫酸亚锡、锡球等组成。电镀时,镀层金属或其他不溶性材料做阳极,待镀的工件做阴极,镀层金属的阳离子在待镀工件表面被还原。此工序电镀液经过滤泵过滤后重复使用,不更换,但过滤泵需定期更换滤芯。产生主要污染物为废滤芯、槽渣。
- (11) 镀铬:镀铬的目的是使镀件表面覆盖上一层铬金属镀层,使镀件的表面具有一定的耐磨性能和光亮的银白色外观。镀铬工艺是采用铬络合离子的化学溶液,在直流 155

电的作用下,把铬离子沉积在阴极带电的镀件表面上。本项目镀铬的主要配方是铬酐和 硫酸。

- (12) 镀金: 用氰化亚金钾作为主要镀液在镀件表面电镀一层金,增强底材的耐磨性,改善材料的接触阻抗,在电镀过程中会产生氰化氢。
- (13)金剥离:用氰化钾作为金剥离专用液,能剥除所有的金电镀层且不损伤材料, 在金剥离过程中会产生氰化氢。
- (14) 镀锡:槽液主要由氨基磺酸、硫酸亚锡、锡球等组成。电镀时,镀层金属或其他不溶性材料做阳极,待镀的工件做阴极,镀层金属的阳离子在待镀工件表面被还原。此工序电镀液经过滤泵过滤后重复使用,不更换,但过滤泵需定期更换滤芯。产生主要污染物为废滤芯、槽渣。
- (15)中和:在中和槽中加入磷酸三钠进行中和,将残留在制品表面和挂臂上的污染物清洗干净,防止污染。
- (16) 镀锡银:锡银层提高其耐腐蚀性。其镀液成为主要为锡酸钾、氰化银钾。此工序电镀液经过滤泵过滤后重复使用,不更换,但过滤泵需定期更换滤芯。产生主要污染物为废滤芯、槽渣和氰化氢

4.1.8 公用工程

1、供电情况

项目电力供应主要依靠市政供电,年用电量达到600万度。

- 2、给排水工程
- (1) 给水工程

生活给水规划: 技改扩建后项目全厂定员 400 人,均不在厂内食宿。参照《广东省用水定额》(DB44/T 1461.3-2021)中办公楼(无食堂和浴室)人均用水按 28m³/人.a 计,则生活用水量为 37.3t/d(11200t/a)。生活污水排放系数按用水量 0.9 计,则生活污水产生约 33.6t/d(10080t/a)。

工业给水规划:项目生产用水包括新鲜来水、回用水。其中,新鲜自来水水量约221.5t/d来自化工区统一规划的供水管网;高平污水处理公司的回用水量120t/d,取自三角镇高平化工区统一规划的中水回用管。

(2) 排水工程

项目排水采取雨污分流,雨水由雨水管网排入附近河涌;生活污水进入三角镇生活污水处理厂进行处理,尾水排入洪奇沥水道。电镀废水经分类收集后由专置管网输送至高平污水处理有限公司进行处理,其中约60%作为回用水经中水回用系统处理后由专用管道返回给金美达公司作为生产用水使用,另外约40%的尾水经高平污水处理有限公司排污口最终排入洪奇沥水道。

4.2工程分析

4.2.1 物料平衡

表 4.2-1 各镀种/物料平衡

镀和	1	1#子续镍锡动端连镀金自线	2# 子 续 镍 锡 动	3#端连 镀金 自 线	4#子续镍锡动端连镀金自线	5# 连 镀 金 自 线	6#子续铜金自线端连镀镍锡动线	7#子续镍锡动端连镀金自线	8#子续镍金自线端连镀钯锡动线	9#子续镍金自线端连镀钯锡动线	10# 连镀钯锡动	11#子续镍金自线	12#子续镍金自线	13# 连镀钯锡动	14#子续镍金自线	15# 连镀钯锡动	16# 连镀钯锡动	17#	18# 端子	19# 连镀镍金自线	20# 挂镀 镍铬 半 动线	21#端连镀半动线	22# 子续镍金钌动线	23#电 铸镍 半自 动线	24 塑挂铜铬动线	25# 滚镀镍 金半动
	镀层面 积(万 m2/a)						2.7		0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	16.0	16.0	16.0	5.5			0.5	0.0	5.0
	镀层厚 度(μm)						0.2		0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.5			0.5	0	0.25
预镀镍	镀层密 度(t/m3)		l	1	1	1					I	I	1	l	ı	I	1	I	I	I	I	1	1	I	1	1
	镀层金 属重 (t/a)						0.05		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.29	0.29	0.29	0.24			0.02	0.00	0.11
	镀层面 积(万 m2/a)																					19.2				5.0
7-2-1-1-1	镀层厚 度(μm)																					0.5				2
碱铜	镀层密 度(t/m3)																									
	镀层金 属重 (t/a)																					0.86				0.90
	镀层面 积(万 m2/a)						2.7													16.0		19.2		0.5	9.0	
酸铜	镀层厚 度(μm)						0.5													1		0.5		0.5	11.5	
HZ NJ	镀层密 度(t/m3)					I					I	I				I	I	I	Г	I	I	I	I	I		
	镀层金 属重 (t/a)						0.12													1.44		0.86		0.02	9.27	
普通镍	镀层面 积(万 m2/a)	20.3	20.3	20.3	20.3	20.3	5.4	20.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	16.0	16.0	16.0	5.5	19.2	7.6		18.0	5.00
	镀层厚	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	5	0.75	3		8	2.0

	度 (µm)																									
	镀层密																									
	度(t/m3)																									
	镀层金																									
	属重	4.52	4.52	4.52	4.52	4.52	1.21	4.52	1.85	1.85	1.85	1.85	1.85	1.85	1.85	1.85	1.85	3.57	3.57	3.57	2.45	1.28	2.02		6.41	0.89
	(t/a)																				-					
	镀层面																									
	积(万	20.3	20.3	20.3	20.3	20.3	5.4	20.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	16.0	16.0							
	m2/a)																									9.0
	镀层厚																									
)	度 (µm)	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25							
高温镍	镀层密			I	1															1		I	ı	I		
	度(t/m3)																									
	镀层金																									
	属重	0.45	0.45	0.45	0.45	0.45	0.12	0.45	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.36	0.36							
	(t/a)																									
	镀层面																									
	积(万																								9.0	
	m2/a)																									
	镀层厚														0.4 0.4 0.4 0.8 3.8 0.3 0.3 0.3 0.075 0.3			2								
化学镍	度 (µm)																								2	
	镀层密																									
	度(t/m3)																									
	镀层金																									
	属重																								1.60	
	(t/a)																									
	镀层面																									
	积(万	1.0	1.0	1.0	1.0	1.0	0.3	1.0	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4			0.8			3.8			2.5
	m2/a)																									
	镀层厚	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3			0.075			0.3			0.075
金	度 (μm)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5			0.075			0.5			0.075
_112.	镀层密																									
	度(t/m3)		I	T	T	I	I	Ι			I				1	1	I	I	I	1			T	ı	I	
	镀层金																									
	属重	0.06	0.06	0.06	0.06	0.06	0.02	0.06	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02			0.01			0.22			0.02
	(t/a)																									
	镀层面																					10.5				
	积(万																					19.2				
银	m2/a)																									
	镀层厚																					2				
金	度(µm)																									
	镀层密																									

	度(t/m3)																							
	镀层金																							
	属重																					4.03		
	(t/a)																							
	镀层面																							
	积(万	12.2	12.2	12.2	12.2	12.2	3.3	12.2	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	16.0	16.0	8.0				2.5
	m2/a)																							
	镀层厚	3.75	2.75	3.75	3.75	2.75	2.75	2.75	3.75	2.75	3.75	2.75	2.75	2.75	2.75	3.75	2.75	3.75	2.75	3.75				2.75
锡	度 (µm)	3.73	3.75	3.73	3.73	3.75	3.75	3.75	3.73	3.75	3.73	3.75	3.75	3.75	3.75	3.73	3.75	3.73	3.75	3.73				3.75
190	镀层密																							
	度(t/m3)																							
	镀层金																							
	属重	2.99	2.99	2.99	2.99	2.99	0.80	2.99	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23	3.93	3.93	1.97				0.68
	(t/a)																							
	镀层面																							
	积(万																				5.5			
	m2/a)																							
	镀层厚																				0.38			
铬(镀六价	度(µm)																							
铬)	镀层密																							
	度(t/m3)			1						1			I						I			I		1
	镀层金																				0.1.5			
	属重 (t/a)																				0.15			
	镀层面																							
	积 (万																						1.0	
	m2/a																						1.0	
	镀层厚																							
铬(钝化六价																							0.05	
各)	镀层密													<u> </u>										
, H	度(t/m3)																							
	镀层金																							
	属重																						0.004	
	(t/a)																							
电铸镍	镀层面																							
	积(万																						0.5	
	m2/a)																							
	镀层厚																						200	
	度 (µm)																						300	
	镀层密																							
	度(t/m3)																							
	镀层金											_											13.36	

	属重											
	(t/a)											
	镀层面											
	积(万											
	m2/a)											
	镀层厚											
珍珠镍	度 (µm)											
	镀层密											
	度(t/m3)											
	镀层金											
	属重											
	(t/a)											
	镀层面											
	积(万											9.0
	m2/a)											
	镀层厚											0.2
铬(镀三价	度 (µm)											
铬)	镀层密											
	度(t/m3)		1	I	1 1							
	镀层金											
	属重											0.13
	(t/a)											

表 4.2-2 镍的物料平衡

₩) (4)		产出 (t)			
1又/	投入 (t)		数量	比例	
氯化	比镍含镍	镀层	105.78	95.00%	
硫酸镍含镍		废水	2.17	1.95%	
镍	角含镍	槽渣	2.23	2.00%	
氨基磺	黄酸镍含镍	挂具损耗	0.50	0.45%	
		废反渗透膜	0.22	0.20%	
小计 111.35		总计	111.35	100%	

表 4.2-3 铬的物料平衡(镀铬)

投入 (t)		产出 (t)			
		排放去向	数量	比例	
		镀铬镀层	0.29	24.50%	
		废水	0.30	25.96%	
炒 而 工。	含铬 1.16	废气	0.14	12.00%	
拾	占 抬 1.10	槽渣	0.11	9.24%	
			0.23	20.00%	
		挂具损耗	0.10	8.30%	
小计	小计 1.16		1.16	100.00%	

表 4.2-4 铬物料平衡 (镀铬+钝化)

-t₁r.	投入 (t)		产出 (t)			
1又/			数量	比例		
			0.39	18.39		
		废水	1.01	47.32		
铬酐	含铬 2.62	废气	0.14	6.57		
三氯化	铬含铬 4.00	槽渣	0.11	5.18		
			0.38	17.86		
		挂具损耗	0.10	4.68		
小计	小计 2.13		2.13	100.00%		

表 4.2-5 铜的物料平衡

A 11 - 0 11 1 1 1 Dd						
投入 (t)		产出 (t)				
		排放去向	数量	比例		
氰化亚铜含铜	0.33	镀层	7.80	90.00%		
硫酸铜含铜	1.43	废水	0.42	5%		
磷铜球含铜	4.29	槽渣	0.30	3.50%		
铜粒含铜	2.62	挂具损耗	0.13	1.50%		
小计	8.67	/	8.67	100%		

表 4.2-6 锡的物料平衡

1	
\bot \bot \bot \bot \bot \bot	立 山 (+)
1 17 / (1)	
327 ()) LL (c)

		排放去向	数量	比例
氰化银含银	1.64	镀层	4.03	98.00%
银板含银含银	2.47	废离子交换树脂	0.06	1.40%
		废水	0.01	0.24%
		槽渣	0.01	0.36%
小计	4.11	/	4.11	100%

表 4.2-7 金的物料平衡

投入 (t)		产出 (t)			
1又八		排放去向	数量	比例	
		镀层	镀层 0.74		
氰化金铂	押含金	废反渗透膜	0.00	0.50%	
0.7	6	废水	0.00	0.30%	
		槽渣及污泥	0.01	1.20%	
小计	0.76	/	0.76	100%	

表 4.2-8 氰化物的物料平衡

	投入 (t)		产出 (t)			
投 人(t)		排放去向	数量	比例		
氰化钠含氰		1.22	废水	0.76	27.08%	
氰化亚铜含氰	0.09		废气	1.91	67.93%	
氰化银含氰	0.35		反应损耗	0.14	4.98%	
氰化钾含氰	0.54					
氰化金钾含氰 1.22						
小	ìt	3.42	/	3.42	101%	

表 4.2-9 锡的物料平衡

投入 (t)		产出 (t)				
		排放去向	数量	比例		
锡	锡球含锡		44.20	95.00%		
甲基硝	甲基磺酸锡含锡		0.72	1.55%		
			1.23	2.65%		
		废反渗透膜	0.37	0.80%		
小计	46.52	总计 46.52 100		100.00%		

4.2.2 污染源及源强分析

4.2.2.1 大气污染物产生及治理

项目废气主要来自前处理、电镀生产线、电泳、水转印、喷漆和天然气锅炉环节,

产生的废气包括氯化氢、硫酸雾、氨气、氰化氢、铬酸雾、有机废气、颗粒物、天然气燃烧废气等。

1、电镀线、前处理废气

(1) 氯化氢、硫酸雾、氰化氢、铬酸雾

根据《污染源源强核算技术指南 电镀》(HJ984-2018),运用产污系数法计算废 气污染物产生量可用以下公式计算。

$$D = G_S \times A \times t \times 10^{-6}$$

式中: D——核算时段内污染物产生量, t;

 G_S ——单位渡槽液面面积单位时间废气污染物产生量, $g/(m^2 \cdot h)$;

A——渡槽液面面积, m²;

t——核算时段内污染物产生时间, h。

根据《污染源源强核算技术指南 电镀》(HJ984-2018)辅料 B 表 B.1,项目镀金、金剥离、镀锡铜、氰活化、镀银、镀锡银、镀铟工序时氰化氢产生系数为 19.8g/(m²•h)。镀锡铜工序氰化氢产生系数为 5.4g/(m²•h)

表 4.2-9 污染物系数取值

污染物	系数 (g/m²·h)	适用范围	本项目取值
层从层	107.3-643.6	在中等或浓盐酸中,不添加酸雾抑制剂、不加热: 氯化氢质量百分浓度 10-15%,取 107.3	/
氯化氢 0.4-15.8		弱酸洗(不加热,质量百分浓度 5-8%),室温高、含量高时取上 限,不添加酸雾抑制剂	项目盐酸浓度为 8%,按照最不利因素考虑,取值 15.8。
氢氰酸	19.8	碱性氰化镀金及金合金、镀镉、 镀银	项目镀金、金剥离、镀锡铜、氰活化、镀 银、镀锡银、镀铟工序取 19.8
	5.4	氰化镀铜、镀铜合金	项目镀锡铜工序取 5.4
铬酸雾	0.38	添加铬雾抑制剂的镀铬槽	项目镀铬、镀三价铬工序取 0.38
硫酸雾	25.2	在质量浓度大于 100g/L 的硫酸中浸蚀、抛光,硫酸阳极氧化,在稀而热的硫酸中浸蚀、抛光,在浓硫酸中退镍、退铜、退银等	项目取值为 25.2.
	5.4	氰化镀铜、镀铜合金	/

注: 氢氰酸以氰化氢表征。

表 4.2-10 氯化氢产生情况

所在位	4. ~ 4.	ナ岸	槽体面积	工作时间	计算系	废气产生量
置	生产线	工序	$/m^2$	/h	数	t/a
	20#挂镀镍铬半自动线	活化	3.12	4800	15.8	0.237
	20#挂镀镍铬半自动线	化学抛 光	1.82	4800	15.8	0.138
	20#挂镀镍铬半自动线	预镀镍	1.82	4800	15.8	0.138
2F	23#电铸镍半自动线	活化	0.6272	4800	15.8	0.048
2F	23#电铸镍半自动线	预镀镍	0.6272	4800	15.8	0.048
	24#塑胶挂镀铜镍铬自动线	沉钯	1.2	4800	15.8	0.000
	25#滚镀铜镍金锡半自动线	活化	0.25	4800	15.8	0.019
	25#滚镀铜镍金锡半自动线	活化	0.25	4800	15.8	0.019
	25#滚镀铜镍金锡半自动线	预镀镍	0.5	4800	15.8	0.038
		合计				0.775
4F	6#端子连续镀铜镍金锡自 动线	预镀镍	0.52	4800	15.8	0.039
	8#端子连续镀镍钯金锡自 动线	预镀镍	0.246	4800	15.8	0.019
	9#端子连续镀镍钯金锡自 动线	预镀镍	0.246	4800	15.8	0.019
	10#端子连续镀镍钯金锡自 动线	预镀镍	0.246	4800	15.8	0.019
5F	11#端子连续镀镍钯金锡自 动线	预镀镍	0.246	4800	15.8	0.019
	12#端子连续镀镍钯金锡自 动线	预镀镍	0.28	4800	15.8	0.021
	13#端子连续镀镍钯金锡自 动线	预镀镍	0.28	4800	15.8	0.021
	14#端子连续镀镍钯金锡自 动线	预镀镍	0.28	4800	15.8	0.021
		合计				0.178
	15#端子连续镀镍钯金锡自 动线	预镀镍	0.246	4800	15.8	0.019
6F	16#端子连续镀镍钯金锡自 动线	预镀镍	0.246	4800	15.8	0.019
	17#端子连续镀镍锡自动线	预镀镍 1	0.6272	4800	15.8	0.048
	17#端子连续镀镍锡自动线	预镀镍 2	0.448	4800	15.8	0.034
	17#端子连续镀镍锡自动线	预镀镍	0.315	4800	15.8	0.024

17#端子连续镀镍锡自动线	活化	0.6272	4800	15.8	0.048
18#端子连续镀镍锡自动线	预镀镍 1	0.6272	4800	15.8	0.048
18#端子连续镀镍锡自动线	预镀镍 2	0.448	4800	15.8	0.034
18#端子连续镀镍锡自动线	预镀镍	0.315	4800	15.8	0.024
18#端子连续镀镍锡自动线	活化	0.6272	4800	15.8	0.048
19#连续镀铜镍锡金半自动 线	预镀镍	0.4212	4800	15.8	0.032
19#连续镀铜镍锡金半自动 线	预镀镍	0.6751	4800	15.8	0.051
19#连续镀铜镍锡金半自动 线	活化	0.2025	4800	15.8	0.015
	合计				0.442

表 4.2-11 氰化氢产生情况

所在位			槽体面积	工作时间	计算系	废气产生量
	生产线	工序				
置			/m ²	/h	数	t/a
2F	25#滚镀铜镍金锡半自动线	碱铜	1.05	4800	5.4	0.027
21	2511 PK 95 PT 5K 312 PS 1 1 1 95 3 2	鍍金	0.5	4800	19.8	0.048
		镀金1	0.66	4800	19.8	0.063
	1#端子连续镀镍金锡自动线	镀金2	0.66	4800	19.8	0.063
		镀金3	0.1984	4800	19.8	0.019
	2#端子连续镀镍金锡自动线	镀金1	0.572	4800	19.8	0.054
	2#姍 1 赶续拨铢壶物日朔线	镀金2	0.1984	4800	19.8	0.019
		镀金1	0.4576	4800	19.8	0.043
	3#端子连续镀镍金锡自动线	镀金2	0.572	4800	19.8	0.054
		镀金3	0.416	4800	19.8	0.040
		镀金1	0.492	4800	19.8	0.047
	4#端子连续镀镍金锡自动线	镀金2	0.473	4800	19.8	0.045
4F		镀金3	0.1984	4800	19.8	0.019
		镀金1	0.52	4800	19.8	0.049
		镀金2	0.6	4800	19.8	0.057
	5	镀金3	0.52	4800	19.8	0.049
	5#端子连续镀镍金锡自动线	镀金4	0.418	4800	19.8	0.040
		镀金5	0.64	4800	19.8	0.061
		镀金6	0.2464	4800	19.8	0.023
	(4) 地名法格德纽维人纽卢马	镀金1	0.52	4800	19.8	0.049
	6#端子连续镀铜镍金锡自动 线	镀金2	0.2464	4800	19.8	0.023
	以	镀金3	0.32	4800	19.8	0.030
	7#端子连续镀镍金锡自动线	镀金1	0.2304	4800	19.8	0.022

		镀金2	0.3915	4800	19.8	0.037
		镀金3	0.375	4800	19.8	0.036
	î	- 合计				1.018
	8#端子连续镀镍钯金锡自动	镀金1	0.246	4800	19.8	0.023
	线	浸金2	0.246	4800	19.8	0.023
	9#端子连续镀镍钯金锡自动	镀金1	0.246	4800	19.8	0.023
	线	镀金2	0.246	4800	19.8	0.023
	10#端子连续镀镍钯金锡自动	镀金1	0.246	4800	19.8	0.023
	线	浸金2	0.246	4800	19.8	0.023
5F	11#端子连续镀镍钯金锡自动	镀金1	0.246	4800	19.8	0.023
3F	线	镀金2	0.246	4800	19.8	0.023
	12#端子连续镀镍钯金锡自动	镀金1	0.2542	4800	19.8	0.024
	线	镀金2	0.2542	4800	19.8	0.024
	13#端子连续镀镍钯金锡自动	镀金1	0.2542	4800	19.8	0.024
	线	镀金2	0.2542	4800	19.8	0.024
	14#端子连续镀镍钯金锡自动	镀金1	0.2542	4800	19.8	0.024
	线	镀金2	0.2542	4800	19.8	0.024
	15#端子连续镀镍钯金锡自动	镀金1	0.246	4800	19.8	0.023
	线	镀金2	0.246	4800	19.8	0.023
	16#端子连续镀镍钯金锡自动	镀金1	0.246	4800	19.8	0.023
	线	镀金2	0.246	4800	19.8	0.023
6F	19#连续镀铜镍锡金半自动线	镀金	0.5684	4800	19.8	0.054
ог		碱铜	0.6272	4800	5.4	0.016
	22#端子连续镀镍钯金铑钌自	预镀 銀	0.6272	4800	19.8	0.060
	动线	镀银1	1.232	4800	19.8	0.117
		镀银2	1.232	4800	19.8	0.117
7F	22#端子连续镀镍钯金铑钉自 动线	鍍金	1.12	4800	19.8	0.106
	î					0.896

表 4.2-12 硫酸雾产生情况

所在位	生产线	工	槽体面积	工作时间	计算系	废气产生量
置	土厂线	序	$/m^2$	/h	数	t/a
	23#电铸镍半自动线	酸	2.132	4800	25.2	0.258
	23#电符保十日幼线	銅	2.132	4800	23.2	
2F	24#塑胶挂镀铜镍铬自动线		2.4	4900	25.2	0.290
ΔΓ	24#	镍	∠. 4	4800	25.2	0.290
	24#塑胶挂镀铜镍铬自动线	24. 網際共經網線放立計群		4800	25.2	0.290
	2 4 #	铜	2.4	4000	25.2	0.290
	0.838					

4F	6#端子连续镀铜镍金锡自动 线	酸铜	0.52	4800	25.2	0.063	
	合计						
6F	19#连续镀铜镍锡金半自动 线	酸铜	0.432	4800	25.2	0.052	
75	21#端子连续镀银自动线	酸铜	1.2544	4800	25.2	0.152	
7F	21#端子连续镀银自动线	活 化	0.6272	4800	25.2	0.076	
	合计						

表 4.2-13 铬酸雾产生情况

所在位	生产线	工序	槽体面积	工作时间	计算系	废气产生量
置	土厂线	上厅	$/m^2$	/h	数	t/a
2F	20#挂镀镍铬半自动线	镀铬	1.82	4800	0.38	0.003
6F	24#塑胶挂镀铜镍铬自动 线	镀三价 铬	2.4	4800	0.38	0.004
	0.007					

(2) 氨气

镀槽氨气的逸散量可用马扎克公式计算:

$$G_S = (5.38 + 4.1u) \bullet P_H \bullet F \bullet \sqrt{M}$$

式中: Gs—有害物质逸散量, g/h;

u—室内风速, m/s;

F—有害物质的散露面积, m²;

M—有害物质的分子量;

 P_H —有害物质在室温时的饱和蒸汽压,mmHg。

表 4.2-14 氨气产生情况

所在位 置	生产线	分子量	风速 m/s	饱和蒸气压/mmHg	面积/m²	g/h	t/a
2F	24#塑胶挂镀铜镍铬自 动线	17	0.3	0.7	2.4	45.79	0.220
合计							0.440
5 E	8#端子连续镀镍钯金 锡自动线	17	0.3	0.7	0.246	4.69	0.023
5F	9#端子连续镀镍钯金 锡自动线	17	0.3	0.7	0.246	4.69	0.023

	10#端子连续镀镍钯金 锡自动线	17	0.3	0.7	0.246	4.69	0.023
	11#端子连续镀镍钯金 锡自动线	17	0.3	0.7	0.246	4.85	0.023
	12#端子连续镀镍钯金 锡自动线	17	0.3	0.7	0.2542	4.85	0.023
	13#端子连续镀镍钯金 锡自动线	17	0.3	0.7	0.4264	8.13	0.039
	14#端子连续镀镍钯金 锡自动线	17	0.3	0.7	0.4756	9.07	0.044
		合ì	+				0.197
6F	15#端子连续镀镍钯金 锡自动线	17	0.3	0.7	0.246	4.69	0.023
ОГ	16#端子连续镀镍钯金 锡自动线	17	0.3	0.7	0.246	4.69	0.023
7F	22#端子连续镀镍钯金 铑钌自动线	17	0.3	0.7	0.7392	14.10	0.068
	合计						

表 4.2-15 电镀线废气产生量一览表

废气来源	排气筒编号	污染物	产生量 t/a
车间2楼酸雾废气	G1	氯化氢	0.775
平同 2 佞敀务及【	GI	硫酸雾	0.838
车间2楼碱性废气	G2	氨气	0.220
车间2楼及4楼含氰废气	G3	氰化氢	1.018
车间2楼及6楼含铬废气	G5	铬酸雾	0.008
车间4楼及5楼酸雾废气	G6	氯化氢	0.178
中间 4 佞及 3 佞敀务版	G0	硫酸雾	0.063
车间 5 楼碱性废气	G7	氨气	0.197
车间5楼、6楼及7楼含氰废气	G8	氰化氢	0.896
车间6楼及7楼酸雾废气	G9	氯化氢	0.442
十四 0 按及 / 按取务/及 (G9	硫酸雾	0.280
车间6楼及7楼碱性废气	G10	氨气	0.113

项目各电镀线封闭、采用泵将药水泵入子槽中处理工件,子槽密封仅在侧边开口排废气,废气收集率以95%计算。项目车间2楼酸雾废气(氯化氢、硫酸雾)收集后经碱液喷淋塔处理后通过50m排气筒G1排放,氯化氢、硫酸雾废气处理效率可达90%;车间2楼碱性废气(氨气)收集后经水喷淋塔处理后通过50排气筒G2排放,处理效率可达90%;车间2楼及车间4楼含氰废气(氰化氢)收集后经碱性次氯酸钠溶液喷

淋塔处理后通过 50 排气筒 G3 排放,处理效率可达 90%;车间 2 楼及车间 6 楼含铬废气(铬酸雾) 收集后经碱液喷淋塔处理后通过 50 排气筒 G5 排放,处理效率可达 90%;车间 4 楼及 5 楼酸雾废气(氯化氢、硫酸雾) 收集后经碱液喷淋塔处理后通过 50m 排气筒 G6 排放,氯化氢、硫酸雾废气处理效率可达 90%;5 楼碱性废气(氨气)收集后经水喷淋塔处理后通过 50 排气筒 G7 排放,处理效率可达 90%;车间 5 楼、6 楼及 7 楼含氰废气(氰化氢)收集后经碱性次氯酸钠溶液喷淋塔处理后通过 50 排气筒 G8 排放,处理效率可达 90%;车间 6 楼及 7 楼酸雾废气(氯化氢、硫酸雾)收集后经碱液喷淋塔处理后通过 50m 排气筒 G9 排放,氯化氢、硫酸雾废气处理效率可达 90%;车间 6 楼及 7 楼碱性废气(氨气)收集后经水喷淋塔处理后通过 50 排气筒 G10 排放,处理效率可达 90%。

表 4.2-16 有组织废气产排情况

排气	风量 (m³/h) /	>-> >147	收集量	产生浓度	产生速	排放量	排放浓度	排放速
筒编 号	直径 (m)/高 度 (m)	污染物	(t/a)	(mg/m ³)	率(kg/h)	(t/a)	(mg/m^3)	率(kg/h)
7) <u>Z</u> (III)	氯化氢	0.736	2.555	0.153	0.074	0.256	0.015
G1	60000/1.3/50	硫酸雾	0.730	2.766	0.166	0.074	0.230	0.013
			0.797	2.700	0.100		0.277	0.017
G2	40000/1.1/50	氨气	0.209	1.087	0.043	0.021	0.109	0.004
G3	50000/1.2/50	氰化氢	0.967	4.030	0.201	0.097	0.403	0.020
G5	15000/0.6/50	铬酸雾	0.007	0.102	0.002	0.001	0.010	0.0002
G6	40000/1.1/50	氯化氢	0.169	0.880	0.035	0.017	0.088	0.004
	40000/1.1/30	硫酸雾	0.060	0.311	0.012	0.006	0.031	0.001
G7	50000/1.2/50	氨气	0.187	0.779	0.039	0.019	0.078	0.004
G8	50000/1.2/50	氰化氢	0.851	3.547	0.177	0.085	0.355	0.018
GO	G9 50000/1.2/50	氯化氢	0.420	1.749	0.087	0.042	0.175	0.009
<u> </u>		硫酸雾	0.266	1.108	0.055	0.027	0.111	0.006
G10	60000/1.3/50	氨气	0.107	0.372	0.022	0.011	0.037	0.002

表 4.2-17 无组织废气产排情况

楼层	污染物	产生量(t/a)	产生速率(kg/h)	排放量(t/a)	排放速率(kg/h)
	氯化氢	0.039	0.008	0.039	0.008
	硫酸雾	0.042	0.009	0.042	0.009
2F	氨气	0.011	0.002	0.011	0.002
	铬酸雾	0.0002	0.00003	0.0002	0.00003
	氰化氢	0.004	0.001	0.004	0.001
4F	氯化氢	0.002	0.0004	0.002	0.0004
4Γ	硫酸雾	0.003	0.001	0.003	0.001

	氰化氢	0.047	0.010	0.047	0.010
	氯化氢	0.007	0.001	0.007	0.001
5F	氨气	0.010	0.002	0.010	0.002
	氰化氢	0.017	0.003	0.017	0.003
	氯化氢	0.017	0.003	0.017	0.003
	硫酸雾	0.005	0.001	0.005	0.001
6F	氨气	0.002	0.0005	0.002	0.0005
	铬酸雾	0.0002	0.00005	0.0002	0.00005
	氰化氢	0.023	0.005	0.023	0.005
	硫酸雾	0.011	0.002	0.011	0.002
7F	氨气	0.003	0.001	0.003	0.001
	氰化氢	0.005	0.001	0.005	0.001

(3) 基准排气量

根据《电镀污染物排放标准》(GB 21900-2008),现有和新建企业单位产品基准排气量应按照下表规定执行:

表 4.2-18 单位产品基准排气量标准

序号	工艺种类	基准排气量 m³/m² (镀件镀层)	排气量计量位置
1	其他镀种 (镀铜、镍等)	37.3	车间或生产设施排气筒

对于单位产品排气量高于《电镀污染物排放标准》(GB 21900-2008)要求的单位产品基准排气量的排气筒,按《电镀污染物排放标准》(GB 21900-2008)把排放浓度换算成基准气量排放浓度。换算公式如下:

$$C_{\underline{a}} = \frac{Q_{\underline{b}}}{Y_i Q_{i\underline{a}}} \bullet C_{\underline{x}}$$

C *: 大气污染物基准排放浓度 (mg/m³);

Q 点: 废气总排放量(m³);

 Y_i : 某种镀件镀层的产量(m^2);

Qi*: 某种镀件的单位产品基准排气量(m³/m²);

 $C_{\mathfrak{g}}$: 实测污染物浓度(mg/m^3)。

从下表,项目各大气污染物的基准气量排放浓度符合标准排放限值。

表 4.2-19 基准气量排放浓度核算结果

电镀线	工序	污染物	电镀面积	基准排气量 m³/m²(镀件镀层)	标准排放浓度(mg/m³)	项目排气筒允许排放量
1#端子连续镀镍金锡自动线	镀金	氰化氢	41.6	37.7	0.5	0.008
2#端子连续镀镍金锡自动线	镀金	氰化氢	41.6	37.7	0.5	0.008
3#端子连续镀镍金锡自动线	镀金	氰化氢	41.6	37.7	0.5	0.008
4#端子连续镀镍金锡自动线	镀金	氰化氢	41.6	37.7	0.5	0.008
5#端子连续镀镍金锡自动线	镀金	氰化氢	41.6	37.7	0.5	0.008
	预镀镍	氯化氢	2.7	37.7	30	0.031
6#端子连续镀铜镍金锡自动线	酸铜	硫酸雾	2.7	37.7	30	0.031
	镀金	氰化氢	16.5	37.7	0.5	0.003
7#端子连续镀镍金锡自动线	镀金	氰化氢	41.6	37.7	0.5	0.008
8#端子连续镀镍钯金锡自动线	预镀镍	氯化氢	0.4	37.7	30	0.005
0#圳 1 建築饭保记壶物目砌线	镀金	氰化氢	17.5	37.7	0.5	0.003
9#端子连续镀镍钯金锡自动线	预镀镍	氯化氢	0.4	37.7	30	0.005
9#蜵] 建铁镀铼铊壶物目砌线	镀金	氰化氢	17.5	37.7	0.5	0.003
10#端子连续镀镍钯金锡自动线	预镀镍	氯化氢	0.4	37.7	30	0.005
10#姍] 足续极铢比並物目幼线	镀金	氰化氢	17.5	37.7	0.5	0.003
11#端子连续镀镍钯金锡自动线	预镀镍	氯化氢	0.4	37.7	30	0.005
11#姍」足续饭铢比並物目幼线	镀金	氰化氢	17.5	37.7	0.5	0.003
12#端子连续镀镍钯金锡自动线	预镀镍	氯化氢	0.4	37.7	30	0.005
12#加丁廷续拔採比並物目幼线	镀金	氰化氢	17.5	37.7	0.5	0.003
13#端子连续镀镍钯金锡自动线	预镀镍	氯化氢	0.4	37.7	30	0.005
13#姍] 足续嵌铢比並物目砌线	镀金	氰化氢	17.5	37.7	0.5	0.003
14#端子连续镀镍钯金锡自动线	预镀镍	氯化氢	0.4	37.7	30	0.005

	镀金	氰化氢	17.5	37.7	0.5	0.003
15#端子连续镀镍钯金锡自动线	预镀镍	氯化氢	0.4	37.7	30	0.005
13#姉丁廷续坡採電並物目初线	镀金	氰化氢	17.5	37.7	0.5	0.003
16#端子连续镀镍钯金锡自动线	预镀镍	氯化氢	0.4	37.7	30	0.005
10#姉丁廷续坡採電並物目初线	镀金	氰化氢	17.5	37.7	0.5	0.003
17#端子连续镀镍锡自动线	预镀镍	氯化氢	16.0	37.7	30	0.181
18#端子连续镀镍锡自动线	预镀镍	氯化氢	16.0	37.7	30	0.181
	预镀镍	氯化氢	16.0	37.7	30	0.181
19#端子连续镀铜镍锡金自动线	酸铜	硫酸雾	32.1	37.7	30	0.363
	镀金	氰化氢	48.9	37.7	0.5	0.009
20#铁端子挂镀镍铬半自动线	预镀镍	氯化氢	5.5	37.7	30	0.062
	碱铜	氰化氢	19.2	37.7	0.5	0.004
21#端子连续镀银半自动线	酸铜	硫酸雾	38.4	37.7	30	0.434
	预镀银+镀银	氰化氢	76.8	37.7	0.5	0.014
22#端子连续镀镍钯金铑钌自动线	镀金	氰化氢	11.3	37.7	0.5	0.002
	预镀镍	氯化氢	0.5	37.7	30	0.006
23#电铸镍半自动线	酸铜	硫酸雾	1.0	37.7	30	0.011
	镀铬	铬酸雾	1.5	74.4	0.05	0.000
	预镀镍	氯化氢	9.0	37.7	30	0.102
24#塑胶挂镀铜镍铬自动线	酸铜	硫酸雾	18.0	37.7	30	0.204
	镀铬	铬酸雾	36.0	74.4	0.05	0.001
	碱铜	氰化氢	18.0	37.7	0.5	0.003
25#滚镀铜镍金锡半自动线	预镀镍	氯化氢	7.6	37.7	30	0.086
	镀金	氰化氢	1.5	37.7	0.5	0.000

2、电泳、水转印、喷漆工序废气

(1) 电泳、烘干工序

项目端子连续电泳半自动线工件在电泳及烘干工序中产生有机废气,主要污染物为非甲烷总烃、TVOC、臭气浓度,按照电泳漆内的有机溶剂全部挥发计算,电泳漆用量为2.86t/a,有机溶剂占比为10%,则产生非甲烷总烃(TVOC)约0.286t/a。

项目电泳工位整体密闭收集,烤箱设置于密闭烘干房内,废气经整体密闭收集,综合考虑收集效率为90%(《广东省工业源挥发性有机物减排量核算方法(试行)》中设备废气排口直连的收集率可达95%,项目收集效率保守考虑取90%)。电泳、烘干工序有机废气单独收集,收集后与水转印、烘干工序有机废气一起处理。

(2) 水转印、烘干工序

项目水转印工序使用 PVA 水转印膜和活化剂,工艺仅通过水转印方式将膜纸上的图案转移,生产过程活化剂在喷涂及产品烘干过程产生的少量有机废气,主要污染物为非甲烷总烃、臭气浓度。项目活化剂用量为 0.7t/a,活化剂组成成分为:40%乙二醇丁醚醋酸酯、30%正丁醇和 30%异丙醇,按最不利情况活化剂 100%挥发计,则水转印工序活化剂挥发产生非甲烷总烃为 0.7t/a。

项目水转印工序在密闭房间内进行,工件经转印、清洗后进入烘干炉烘干处理,烘干炉为密闭箱体设计,箱体中间设置管道收集,仅有少量废气从进出口处逸散,建设单位拟在进出口处设置集气罩,加强对逸散废气的收集,收集效率可达 90%(《广东省工业源挥发性有机物减排量核算方法(试行)》中设备废气排口直连的收集率可达 95%,项目收集效率保守考虑取 90%)。废气收集后和电泳工序废气一起经水喷淋+活性炭吸附装置处理达标后通过排气筒 G4 高空排放,有机废气处理效率可达 80%以上,风机设计处理风量为 15000m³/h,工作时间 4800h,项目电泳、水转印、烘干工序废气产排情况见下表。

污染源	电泳、烘干	水转印、烘干工序	合计
排气筒编号	G4	G4	G4
污染物	非甲烷总烃(TVOC)	非甲烷总烃(TVOC)	非甲烷总烃(TVOC)
总产生量/t	0.286	0.7	0.986
收集率	90%	90%	90%

表 4.2-20 电泳、水转印、烘干工序废气产排一览表

₹		80%	80%	80%
	产生量 t/a	0.258	0.630	0.888
	产生浓度 mg/m³	3.581	8.750	12.331
有组织排	产生速率 kg/h	0.054	0.131	0.185
放	排放量 t/a	0.052	0.126	0.178
	排放浓度 mg/m³	0.358	0.875	1.233
	排放速率 kg/h	0.005	0.013	0.018
无组织排	排放量 t/a	0.029	0.070	0.099
放	排放速率 kg/h	0.006	0.015	0.021
总抽	风量 m³/h	150	15000	
有组织	排放高度 m	5	50	
工作	作时间 h	48	4800	

3、天然气锅炉燃烧废气

项目设有一台 150 万大卡燃天然气锅炉,年消耗天然气 42.965 万 m³。锅炉燃烧过程产生燃烧废气,主要污染物为二氧化硫、氮氧化物、烟尘和烟气黑度。根据废气参考《排放源统计调查产排污核算方法和系数手册》中"锅炉产排污量核算系数手册"类别"燃气工业锅炉"产排污系数,污染物 SO₂ 的产污系数为 0.02Skg/万 m³-原料(含硫分 S取 100mg/m³)、NOx 的产污系数(低氮燃烧-国际领先)是 3.03kg/万 m³-原料、烟尘产污系数为 1.4kg/万 m³-原料、工业废气量产污系数为 107753m³/万 m³-原料。天然气燃烧产污系数取值详见下表。

燃料	污染物指标	产污系数	单位			
	烟气量	107753	标立方米/万立方米-原料			
	二氧化硫	0.02S	千克/万立方米-原料			
天然气	复复 IV Wm	3.03(低氮燃烧-国	 千克/万立方米-原料			
	氮氧化物	际领先)	│			
	烟尘	1.4	千克/万立方米-原料			
注: 硫含量 S 耳	X 100mg/m ³					

表 4.2-21 天然气燃烧产污系数取值表

项目天然气燃烧废气收集后,通过排放高度为 50 m 的 G11 排气筒排放,排放标准 执行广东省地方标准《锅炉大气污染物排放标准》(DB 44/765-2019)表 2 新建锅炉大 气污染物排放浓度限值。项目天然气燃烧废气产排情况及达标判定见下表。

表 4.2-22 燃天然气锅炉燃烧废气产排一览表

产污设备	烟气量 (万 m³/a)	污染物	烟气量 (m³/h)	核算排放 浓度 (mg/m³)	核算排放速 率(kg/h)	核算年 排放量 (t/a)	标准浓 度限值 mg/m³
		SO2		18.561	0.036	0.086	50
天然气	462.956	NOX	1928.983	28.120	0.054	0.130	150
锅炉	402.930	颗粒物	1920.903	1928.983		0.060	20
		烟气黑度					

从上表可看出,项目天然气燃烧废气排放达到广东省地方标准《锅炉大气污染物排放标准》(DB 44/765-2019)表 2 新建锅炉大气污染物排放浓度限值。

4、废气产排汇总

根据各类废气计算,项目废气产生、排放情况见表 3.3-17,废气污染源源强核算结果及相关参数见表 4.2-22。

表4.2-23 项目废气污染物产排情况汇总表

		排气		排			产生	情况				排放情况	2
序号	污染源	筒编号	排气量 m3/h	放方式	污染因子	数量 t/a	速率 kg/h	浓度 mg/m3	治理方式	处理 效率	数量 t/a	速率 kg/h	浓度 mg/m3
		G1	60000		氯化氢	0.736	0.153	2.555	碱液喷淋塔	90%	0.074	0.015	0.256
		Gi	00000		硫酸雾	0.797	0.166	2.766	+50m 排气筒	90%	0.080	0.017	0.277
		G2	40000		氨气	0.209	0.043	1.087	水喷淋塔+50m 排气筒	90%	0.021	0.004	0.109
		G3	50000		氰化氢	0.967	0.201	4.030	碱性次氯酸钠 溶液喷淋塔 +50m排气筒	90%	0.097	0.020	0.403
	生产废			有	非甲烷总烃 (TVOC)	0.888	0.185	12.331	水喷淋塔+活	80%	0.178	0.037	2.466
1	气	G4	15000	组织	臭气浓度 少量 /		/	≤40000(无量 纲)	性炭吸附+50m 排气筒	/	少量	/	≤40000 (无量 纲)
		G5	15000		铬酸雾	0.007	0.002	0.102	焦亚硫酸钠+ 碱液喷淋+50m 排气筒	90%	0.001	0.0002	0.010
		C6	40000]	氯化氢	0.169	0.035	0.880	碱液喷淋塔	90%	0.017	0.004	0.088
		G6	40000		硫酸雾	0.060	0.012	0.311	+50m 排气筒	90%	0.006	0.001	0.031
		G7	50000		氨气	0.187	0.039	0.779	水喷淋塔+50m 排气筒	90%	0.019	0.004	0.078

			1			1					I	ı																								
		~ 0							碱性次氯酸钠																											
		G8	50000		氰化氢	0.851	0.177	3.547	溶液喷淋塔	90%	0.085	0.018	0.355																							
									+50m 排气筒																											
		G9	50000		氯化氢	0.420	0.087	1.749	碱液喷淋塔	90%	0.042	0.009	0.175																							
		<u> </u>	30000		硫酸雾	0.266	0.055	1.108	+50m 排气筒	90%	0.027	0.006	0.111																							
		G10	60000		氨气	0.107	0.022	0.372	水喷淋塔+50m 排气筒	90%	0.011	0.002	0.037																							
					二氧化硫	0.086	0.036	18.561		/	0.086	0.036	18.561																							
		G11	1928.983		氮氧化物	0.130	0.054	28.120	50m 排气筒排	/	0.130	0.054	28.120																							
		GII	1928.983		颗粒物	0.060	0.025	12.993	放	/	0.060	0.025	12.993																							
					烟气黑度		1 \$			/		1级																								
					氯化氢	0.039	0.008	/		/	0.039	0.008	/																							
								硫酸雾	0.042	0.009	/		/	0.042	0.009	/																				
							氨气	0.011	0.002	≤20(无量纲)		/	0.011	0.002	≤20 (无量 纲)																					
	车间 2F	/	/		铬酸雾	0.0002	0.00003	/		/	0.0002	0.00003	/																							
	1 1 21	,	,	,	7	,	7	,	,	,	,	,	7							·	·	,	7	7			, ±	氰化氢	0.004	0.001	/		/	0.004	0.001	/
2																																	 无 组	非甲烷总烃	0.070	0.015
																				织	臭气浓度	/	/	≤20 (无量纲)		/	/	/	≤20 (无量 纲)							
					氯化氢	0.002	0.0004	/		/	0.002	0.0004	/																							
	车间 4F	/	/		硫酸雾	0.003	0.001	/		/	0.003	0.001	/																							
			/		,	,		,		,	, ,	,		,		氰化氢	0.047	0.010	/		/	0.047	0.010	/												
	左 语 50	,]	氯化氢	0.007	0.001	/		/	0.007	0.001	/																				
	车间 5F	/					/	/	/	/	/	/	/	/	/	/		氨气	0.010	0.002	/	1	/	0.010	0.002	/										

			氰化氢	0.017	0.003	/	/	0.017	0.003	/
			氯化氢	0.017	0.003	/	/	0.017	0.003	/
			硫酸雾	0.003	0.001	/	/	0.003	0.001	/
车间 6F	/	/	氨气	0.002	0.0005	/	/	0.002	0.0005	/
			铬酸雾	0.0002	0.00005	/	/	0.0002	0.00005	/
			氰化氢	0.023	0.005	/	/	0.023	0.005	/
			硫酸雾	0.011	0.002	/	/	0.011	0.002	/
			氨气	0.003	0.001	/	/	0.003	0.001	/
车间 7F	,	,	氰化氢	0.005	0.001	/	/	0.005	0.001	/
+- +1) / Γ	/	/	非甲烷总烃	0.029	0.006	/	/	0.029	0.006	/
			臭气浓度	/	/	≤20(无量纲)	/	/	/	≤20 (无量 纲)

4.2.2.2 水污染物产生及治理

1、生活污水

技改扩建后项目全厂定员 400 人,均不在厂内食宿。参照《广东省用水定额》(DB44/T 1461.3-2021)中办公楼(无食堂和浴室)人均用水按 28m³/人.a 计,则生活用水量为 37.3t/d (11200t/a)。生活污水排放系数按用水量 0.9 计,则生活污水产生约 33.6t/d (10080t/a)。生活污水经三级化粪池预处理后由市政管道输送至三角镇生活污水处理厂处理,尾水水质达广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段一级标准与《城镇污水处理厂污染物排放标准》(GB18918-2002)一级 A 标准较严者后排入洪奇沥水道。

	工山1374日137	K 107 111 10 00		
污染物	$CODc_r$	BOD_5	SS	NH ₃ -N
产生浓度(mg/L)	250	150	150	25
产生量(t/a)	2.52	1.512	1.512	0.252
排放浓度(mg/L)	250	150	150	25
排放量(t/a)	2.52	1.512	1.512	0.252

表 4.2-23 生活污水各污染物产排情况

2、生产废水

项目技改扩建后分产生前处理废水、综合废水、含铬废水、电镀镍废水、含氰废水、混排废水、化学镍废水等,总排量为 237.28t/d。经专置污水管网排入三角镇高平污水处理有限公司进行处理,尾水达到广东省《电镀水污染物排放标准》(DB44/1597-2015)表 1 中珠三角排放限值要求,其中 60%作为回用水经专用管道返回给金美达公司作为生产用水,另外 40%的尾水经三角镇高平污水处理有限公司排污口最终排入洪奇沥水道。各生产线废水产生情况如下:

表 4.2 25 1#端子连续镀镍金锡自动线生产废水产排情况

	1		1	1	1	77 112 22 211 117								
设备	数量	长(mm)	宽(mm)	高(mm)	排放方式	工作时间(h/d)	流速 L/min	自来水 (t/d)	纯水 (t/d)	回用水 (t/d)	重复用 水(t/d)	废水量(t/d)	合计 t/d	
电解脱脂 1	1	1100	600	450			L/IIIII	(t/d)	(I/U)	(UU)	7,100		 W1 前处理废水	1.92
电解脱脂 2	1	1100	600	450									W2 综合废水(其他)	0.96
回收	1	1100	320	450									W4 电镀镍废水(高温镍+电铸镍)	0.96
电解脱脂 3	1	1100	600	450									W5 含氰废水(镀金)	0.96
水洗	1	1100	320	450	连续流	16	1.0			1.07		0.96	W7 混排废水	0.35
电解脱脂 4	1	1100	600	450	1019,000							0.50	W2 综合废水(镀锡)	1.92
水洗 1	1	1100	320	450		16	1.0				1.07	0.96		
水洗 2	1	1100	320	450	 逆流水洗连续溢流						1.07			
水洗 3	1	1100	320	450						1.07				
活化	1	1100	600	450										
水洗 1	1	1100	320	450		16	1.0				1.07	0.96		
水洗 2	1	1100	320	450	→ 逆流水洗连续溢流						1.07			
水洗 3	1	1100	320	450						1.07				
镀镍 1	1	1100	1200	450										
镀镍 2	1	1100	1200	450										
回收	1	1100	600	450										
镀镍 3	1	1100	1200	450										
回收	1	1100	320	450										
回收	1	1100	320	450										
回收	1	1100	320	450										
高温镍	1	1100	600	450										
回收	1	1100	320	450										
回收	1	1100	320	450										
水洗 1	1	1100	320	450		16	1.0				1.07	0.96		
水洗 2	1	1100	320	450							1.07			
水洗 3	1	1100	320	450							1.07			
水洗 4	1	1100	320	450							1.07			
水洗 5	1	1100	320	450					1.07					
镀金1	1	1100	600	450										
镀金2	1	1100	600	450										
回收	1	1100	320	450										
镀金3	1	620	320	450										
水洗 1	1	1100	320	450		16	1.0				1.07	0.96		
水洗 2	1	1100	320	450							1.07			
水洗 3	1	1100	320	450					1.07					
镀锡 1	1	1100	1200	450										
镀锡 2	1	1100	1200	450										

镀锡 3	1	1100	1200	450								
水洗 1	1	1100	320	450		16	1.0			1.07	0.96	
水洗 2	1	1100	320	450	逆流水洗连续溢流					1.07		
水洗 3	1	1100	320	450	逆抓水机赶铁価抓					1.07		
水洗 4	1	1100	320	450				1.07				
水洗 1	1	1100	600	450		16	1.0			1.07	0.96	
水洗 2	1	1100	600	450	逆流水洗连续溢流					1.07		
水洗 3	1	1100	600	450	逆抓水机赶铁価抓					1.07		
水洗 4	1	1100	600	450				1.07				
混排废水									0.39		0.35	

表 4.2-26 2#端子连续镀镍金锡自动线生产废水产排情况

	1	1	1	1	1	,,,,				79 -7 - 7 113 -				
设备	数量	长(mm)	宽(mm)	高(mm)	排放方式	工作时间(h/d)	流速	自来水	纯水	回用水	1	废水量(t/d)	合计 t/d	
中 8 77 日公 日匕 1	1		(20)	250			L/min	(t/d)	(t/d)	(t/d)	水(t/d)		W1 类界地區小	1.02
电解脱脂 1	1	1300	620	350									W1 前处理废水	1.92
回收 回收	1	1300	330	450									W2 综合废水(其他)	0.96
电解脱脂 2	1	1300	620	450									W4 电镀镍废水(高温镍+电铸镍)	0.96
电解脱脂 3	1	1300	620	450	ケルン	1.6	1.0			1.07		0.06	W5 含氰废水(镀金)	0.96
水洗	1	1300	330	450	连续流	16	1.0			1.07		0.96	W7 混排废水	0.35
电解脱脂 4	1	1300	620	450		1.0	1.0				1.05	0.06	W2 综合废水(镀锡)	1.92
水洗 1	1	1300	330	450)	16	1.0				1.07	0.96		
水洗 2	1	1300	330	450	逆流水洗连续溢流					1.0=	1.07			
水洗 3	1	1300	330	450						1.07				
活化	1	1300	620	450										
水洗 1	1	1300	330	450		16	1.0				1.07	0.96		
水洗 2	1	1300	330	450	逆流水洗连续溢流						1.07			
水洗 3	1	1300	330	450						1.07				
回收	1	1300	600	450										
普通镍1	1	1300	1420	450										
普通镍 2	1	1300	1420	450										
普通镍3	1	1300	1420	450										
回收	1	1300	330	450										
回收	1	1300	330	450										
回收	1	1300	330	450										
高温镍	1	1300	620	450										
回收	1	1300	330	450										
回收	1	1300	310	450										
回收	1	1300	310	450										
水洗 1	1	1300	330	450		16	1.0				1.07	0.96		
水洗 2	1	1300	330	450	逆流水洗连续溢流						1.07			
水洗 3	1	1300	330	450					1.07					
镀金1	1	1300	440	450										
回收	1	1300	330	450										
回收	1	1300	330	450									自来水→前处理	0.00
镀金2	1	620	320	450									纯水→含镍废水	1.07
水洗 1	1	1300	330	450	メンスコンル ケ /+ ソハマ	16	1.0				1.07	0.96	纯水→含氰废水 (镀金)	1.07
水洗 2	1	1300	330	450	一 逆流水洗连续溢流				1.07				纯水→镀锡	2.13
镀锡 1	1	1300	1420	450									回用水→前处理	2.13
镀锡 2	1	1300	1420	450									回用水→混排废水	0.39
水洗 1	1	1300	600	450	14 17 1. 14 14 11 11	16	1.0				1.07	0.96	回用水→综合废水	1.07
水洗 2	1	1300	600	450	一 逆流水洗连续溢流						1.07			7.86

水洗 3	1	1300	600	450					1.07	
水洗 4	1	1300	600	450				1.07		
水洗 1	1	1300	320	450		16	1.0		1.07	0.96
水洗 2	1	1300	320	450					1.07	
水洗 3	1	1300	320	450	逆流水洗连续溢流				1.07	
水洗 4	1	1100	320	450					1.07	
水洗 5	1	1300	330	450				1.07		
混排废水									0.39	0.35

表 4.2-27 3#端子连续镀镍金锡自动线生产废水产排情况

设备	数量	长(mm)	宽(mm)	高(mm)	排放方式	工作时间(h/d)	流速 L/min	自来水 (t/d)	纯水 (t/d)	回用水 (t/d)	重复用 水(t/d)	废水量(t/d)	合计 t/d	
电解脱脂 1	1	1300	520	450									W1 前处理废水	0.96
电解脱脂 2	1	1300	520	450									W2 综合废水(其他)	0.96
电解脱脂 3	1	1300	520	450									W4 电镀镍废水(高温镍+电铸镍)	0.96
回收	1	1300	390	450		16						0.00	W5 含氰废水 (镀金)	1.92
电解脱脂 4	1	1300	520	450									W7 混排废水	0.35
水洗 1	1	1300	250	450		16	1.0				1.07	0.96	W2 综合废水 (镀锡)	1.92
水洗 2	1	1300	250	450	逆流水洗连续溢流						1.07			
水洗 3	1	1300	250	450						1.07				
活化	1	1300	620	450										
水洗 1	1	1300	250	450		16	1.0				1.07	0.96		
水洗 2	1	1300	250	450	逆流水洗连续溢流						1.07			
水洗 3	1	1300	250	450						1.07				
回收	1	1300	520	450										
普通镍 1	1	1300	1640	450										
普通镍 2	1	1300	1640	450										
普通镍 3	1	1300	1640	450										
回收	1	1300	320	450										
回收	1	1300	250	450										
回收	1	1300	250	450										
回收	1	1300	250	450										
高温镍	1	1300	620	450										
回收	1	1300	250	450										
回收	1	1300	250	450										
回收	1	1300	250	450										
水洗 1	1	1300	320	450		16	1.0				1.07	0.96		
水洗 2	1	1300	320	450	╸ │ 逆流水洗连续溢流 │						1.07			
水洗 3	1	1300	320	450					1.07					
镀金1	1	1040	440	490										
镀金 2	1	1300	440	490										
回收	1	1300	260	450										
回收	1	1300	260	450										
水洗 1	1	900	260	450		16	1.0				1.07	0.96		
水洗 2	1	1300	260	450	- 逆流水洗连续溢流						1.07			
水洗 3	1	1300	260	450					1.07					
镀金3	1	1300	320	450										
回收	1	1300	200	450										
回收	1	1300	200	450										

水洗 1	1	1300	520	450	逆流水洗连续溢流	16	1.0		1.07	0.96	
水洗 2	1	1300	520	500	逻机小爪廷铁温机			1.07			
镀锡 1	1	1300	1640	450							
镀锡 2	1	1300	430.5	450							
水洗 1	1	1300	250	450		16	1.0		1.07	0.96	
水洗 2	1	1300	250	450					1.07		
水洗 3	1	1300	250	450	逻机小机压铁恒机				1.07		
水洗 4	1	1300	250	450				1.07			
水洗 1	1	1300	320	450		16	1.0		1.07	0.96	
水洗 2	1	1300	320	450	 逆流水洗连续溢流				1.07		
水洗 3	1	1300	320	450	逻机水机赶铁価机				1.07		
水洗 4	1	1300	320	450				1.07			
混排废水								0.39		0.35	

表 4.2-28 4#端子连续镀镍金锡自动线生产废水产排情况

设备	数量	长(mm)	宽(mm)	高(mm)	排放方式	工作时间(h/d)	流速 L/min	自来水 (t/d)	纯水 (t/d)	回用水 (t/d)	重复用 水(t/d)	废水量(t/d)	合计 t/d	
电解脱脂 1	1	1000	540	500									W1 前处理废水	0.96
电解脱脂 2	1	1000	540	500									W2 综合废水(其他)	0.96
电解脱脂 3	1	1000	540	500									W4 电镀镍废水(高温镍+电铸镍)	0.96
电解脱脂 4	1	1000	540	500									W5 含氰废水 (镀金)	0.96
回收	1	1100	250	500									W7 混排废水	0.35
水洗 1	1	1100	250	500		16	1.0				1.07	0.96	W2 综合废水 (镀锡)	2.88
水洗 2	1	1100	250	500	逆流水洗连续溢流						1.07			
水洗 3	1	1100	250	500						1.07				
活化	1	1100	540	500										
水洗 1	1	1100	250	500		16	1.0				1.07	0.96		
水洗 2	1	1100	250	500)						1.07			
水洗 3	1	1100	250	500	逆流水洗连续溢流						1.07			
水洗 4	1	1100	250	500						1.07				
普通镍1	1	1100	1690	500										
普通镍 2	1	1100	1690	500										
普通镍3	1	1100	1690	500										
回收	1	1100	250	500										
回收	1	1100	250	500										
回收	1	1100	250	500										
高温镍	1	1100	600	500										
回收	1	1100	250	500										
回收	1	1100	250	500										
回收	1	1100	250	500										
水洗 1	1	1100	250	500		16	1.0				1.07	0.96		
水洗 2	1	1100	250	500	逆流水洗连续溢流						1.07			
水洗 3	1	1100	250	500					1.07					
镀金1	1	820	600	600										
镀金2	1	1100	430	500										
回收	1	1100	400	500										
镀金3	1	620	320	450										
回收	1	1100	250	500										
回收	1	1100	250	500										
回收	1	1100	250	500										
回收	1	1100	250	500					1					
水洗 1	1	1100	250	500		16	1.0				1.07	0.96		
水洗 2	1	1100	250	500	逆流水洗连续溢流						1.07			
水洗 3	1	1100	250	500							1.07			

水洗 4	1	1100	250	500				1.07				
镀锡1	1	1100	1680	500								
镀锡 2	1	1100	1680	500								
水洗 1	1	1100	250	500		16	1.0			1.07	0.96	
水洗 2	1	1100	250	500	逆流水洗连续溢流					1.07		
水洗 3	1	1100	250	500				1.07				
水洗 1	1	1100	540	500		16	1.0			1.07	0.96	
水洗 2	1	1100	540	500	逆流水洗连续溢流					1.07		
水洗 3	1	1100	540	500				1.07				
水洗 1	1	1100	250	500	│ │ 逆流水洗连续溢流	16	1.0			1.07	0.96	
水洗 2	1	1100	250	500	芝州 小儿往铁值抓			1.07				
混排废水									0.39		0.35	

表 4.2-29 5#端子连续镀镍金锡自动线生产废水产排情况

设备	数量	K(mm)	宽(mm)	高(mm)	排放方式	工作时间(h/d)	流速	自来水	纯水	回用水	重复用	废水量(t/d)	合计 t/d	
以甘		长(mm)	火(IIIII)	同(IIIII)	1 州 从 八 八	工15時1月(11/47)	L/min	(t/d)	(t/d)	(t/d)	水(t/d)	及小里(Vd)	η I I Va	
电解脱脂 1	1	1300	600	400									W1 前处理废水	0.96
电解脱脂 2	1	1300	600	400									W2 综合废水 (其他)	0.96
电解脱脂 3	1	1300	600	400									W4 电镀镍废水(高温镍+电铸镍)	0.96
电解脱脂 4	1	1300	600	400									W5 含氰废水 (镀金)	0.96
回收	1	1300	250	400									W7 混排废水	0.35
水洗 1	1	1300	250	400	· 逆流水洗连续溢流	16	1.0				1.07	0.96	W2 综合废水 (镀锡)	2.88
水洗 2	1	1300	250	400	逆抓水机赶铁価抓						1.07			
水洗 3	1	1300	250	400						1.07				
活化	1	1300	600	400										
水洗	1	1300	470	400	连续溢流	16	1.0			1.07		0.96		
普通镍 1	1	1300	1500	400										
普通镍1	1	1300	1500	400										
回收	1	1300	250	400										
回收	1	1300	250	400										
回收	1	1300	250	400										
回收	1	1300	250	400										
高温镍	1	1300	670	400										
回收	1	1300	270	400										
水洗 1	1	1300	250	400		16	1.0				1.07	0.96		
水洗 2	1	1300	250	400							1.07			
水洗 3	1	1300	250	400	逆流水洗连续溢流						1.07			
水洗 4	1	1300	250	400							1.07			
水洗 5	1	1300	250	400					1.07					
镀金1	1	1300	400	400										
镀金2	1	1200	500	550										
镀金3	1	1000	520	560										
回收	1	1300	250	400										
回收	1	1300	250	400										
回收	1	1300	250	400										
镀金4	1	1100	380	500										
镀金 5	1	800	800	470										
回收	1	1300	470	400										
镀金6	1	1120	220	400										
水洗 1	1	1300	470	400	74674- 1. M. VE 14 77 72-	16	1.0				1.07	0.96		
水洗 2	1	1300	470	400	- 逆流水洗连续溢流				1.07					
镀锡	1	1300	1400	400										
水洗 1	1	1300	250	400	逆流水洗连续溢流	16	1.0				1.07	0.96		

水洗 2	1	1300	250	400						1.07		
水洗 3	1	1300	250	400				1.07				
水洗 1	1	1300	300	400		16	1.0			1.07	0.96	
水洗 2	1	1300	300	400	逆流水洗连续溢流					1.07		
水洗 3	1	1300	300	400				1.07				
水洗 1	1	1300	300	400		16	1.0			1.07	0.96	
水洗 2	1	1300	250	400	 逆流水洗连续溢流					1.07		
水洗 3	1	1300	250	400	逆抓水机足铁価抓					1.07		
水洗 4	1	1300	600	400				1.07				
混排废水				·					0.39		0.35	

表 4.2-30 6#端子连续镀铜镍金锡自动线生产废水产排情况

							~ «	~ H · /4 · /4 · /4	/ //	411 114 20				
设备	数量	长(mm)	宽(mm)	高(mm)	排放方式	工作时间(h/d)	流速 L/min	自来水 (t/d)	纯水 (t/d)	回用水 (t/d)	重复用 水(t/d)	废水量(t/d)	合计 t/d	
超声波脱脂	1	1100	400	400									W1 前处理废水	0.96
电解脱脂 1	1	1300	600	400									W2 综合废水(其他)	0.24
电解脱脂 2	1	1300	600	400									W4 电镀镍废水(普通镍+预镀镍+镀镍)	0.24
电解脱脂 3	1	1300	600	400									W4 电镀镍废水 (高温镍+电铸镍)	0.96
电解脱脂 4	1	1300	600	400									W5 含氰废水 (镀金)	0.96
回收	1	1300	250	400									W7 混排废水	0.38
回收	1	1300	250	400									W2 综合废水 (镀锡)	3.84
水洗 1	1	1300	250	400	*************************************	16	1.0				1.07	0.96		
水洗 2	1	1300	250	400	- 逆流水洗连续溢流					1.07				
活化	1	1300	600	400										
预镀镍	1	1300	400	400										
回收	1	1300	250	400										
回收	1	1300	250	400										
水洗 1	1	1300	250	400	*************************************	4	1.0				0.27	0.24		
水洗 2	1	1300	250	400	- 逆流水洗连续溢流				0.27					
酸铜	1	1300	400	400										
水洗 1	1	1300	250	400	*************************************	4	1.0				0.27	0.24		
水洗 2	1	1300	250	400	- 逆流水洗连续溢流				0.27					
普通镍	1	1300	1500	400										
普通镍	1	1300	1500	400										
回收	1	1300	250	400										
回收	1	1300	250	400										
回收	1	1300	250	400										
回收	1	1300	250	400										
普通镍	1	1300	670	400										
回收	1	1300	270	400										
回收	1	1300	250	400										
回收	1	1300	250	400										
回收	1	1300	270	400										
回收	1	1300	250	400										
回收	1	1300	250	400										
高温镍	1	1300	400	400										
回收	1	1300	250	400										
回收	1	1300	250	400										
回收	1	1300	250	400										
水洗 1	1	1300	250	400	ン大 大 1 14 14 14 11 11 12 14 11 11 12 14 14 11 11 12 14 14 11 11 12 14 14 11 11 12 14 14 11 11 12 14 14 11 11 12 14 14 14 11 11 12 14 14 14 11 12 14 14 14 14 14 14 14 14 14 14 14 14 14	16	1.0				1.07	0.96		
水洗 2	1	1300	250	400	- 逆流水洗连续溢流						1.07			

		Τ	Т	T					T T			
水洗 3	1	1300	250	400				1.07				
镀金1	1	1300	400	400								
回收	1	1300	250	400								
回收	1	1300	250	400								
回收	1	1300	250	400								
回收	1	1300	250	400								
回收	1	1300	250	400								
镀金 2	1	1120	220	400								
回收	1	1300	250	400								
回收	1	1300	250	400								
镀金3	1	800	400	500								
回收	1	1300	250	400								
回收	1	1300	250	400								
回收	1	1300	250	400								
水洗 1	1	1300	200	400		16	1.0		1.07	0.96		
水洗 2	1	1300	200	400	逆流水洗连续溢流				1.07			
水洗 3	1	1300	200	400				1.07				
鍍錫	1	1300	700	400								
水洗 1	1	1300	300	400	*************************************	16	1.0		1.07	0.96		
水洗 2	1	1300	300	400	- 逆流水洗连续溢流 -			1.07				
水洗 1	1	1300	300	400		16	1.0		1.07	0.96		
水洗 2	1	1300	300	400	逆流水洗连续溢流				1.07			
水洗 3	1	1300	300	400				1.07				
水洗 1	1	1300	300	400)关次。 以 外、大/去兴次	16	1.0		1.07	0.96		
水洗 2	1	1300	300	400	- 逆流水洗连续溢流 -			1.07				
水洗 1	1	1300	600	400	连续溢流	16	1.0	1.07		0.96		
混排废水								0.42		0.38		
-	•						· '	<u> </u>			 	

表 4.2-31 7#端子连续镀镍金锡自动线生产废水产排情况

设备	数量	长(mm)	宽(mm)	高(mm)	排放方式	工作时间(h/d)	流速 L/min	自来水 (t/d)	纯水 (t/d)	回用水 (t/d)	重复用 水(t/d)	废水量(t/d)	合计 t/d	
超聲波脫脂	1	1250	650	400									W1 前处理废水	0.96
电解脱脂 1	1	1250	650	400									W2 综合废水 (其他)	0.96
电解脱脂 2	1	1250	650	400									W4 电镀镍废水 (高温镍+电铸镍)	0.96
回收	1	1250	300	400									W5 含氰废水 (镀金)	0.96
电解脱脂 3	1	1250	650	400									W7 混排废水	0.35
水洗 1	1	1250	250	400		16	1.0				1.07	0.96	W2 综合废水 (镀锡)	2.88
水洗 2	1	1250	250	400	逆流水洗连续溢流						1.07			
水洗 3	1	1250	250	400						1.07				
活化	1	1250	650	400										
水洗 1	1	1250	250	400		16	1.0				1.07	0.96		
水洗 2	1	1250	250	400	逆流水洗连续溢流						1.07			
水洗 3	1	1250	250	400						1.07				
普通镍1	1	1500	1250	400										
回收	1	850	650	400										
普通镍 2	1	1500	1250	400										
普通镍3	1	1500	1250	400										
回收	1	1250	250	400										
回收	1	1250	250	400										
回收	1	1250	250	400										
高溫鎳	1	650	1250	400										
回收	1	640	300	400	回收利用									
回收	1	1250	250	400										
回收	1	1250	250	400										
回收	1	1250	250	400										
水洗 1	1	1250	250	400	*************************************	16	1.0				1.07	0.96		
水洗 2	1	1250	250	400	- 逆流水洗连续溢流				1.07					
镀金1	1	720	320	510										
镀金2	1	870	450	500										
回收	1	1250	250	400										
回收	1	1250	250	400										
回收	1	1250	250	400										
镀金3	1	1250	300	400										
水洗 1	1	1250	250	400		16	1.0				1.07	0.96		
水洗 2	1	1250	250	400	ンチンオーハルトナノナンハンテ						1.07			
水洗 3	1	1250	250	400	- 逆流水洗连续溢流						1.07			
水洗 4	1	1250	250	400	1				1.07					
鍍錫 1	1	1250	2000	400										

鍍錫 2	1	1250	1500	400							
水洗 1	1	1250	250	400		16	1.0		1.07	0.96	
水洗 2	1	1250	250	400	逆流水洗连续溢流				1.07		
水洗 3	1	1250	250	400				1.07			
水洗 1	1	1250	650	400	逆流水洗连续溢流	16	1.0		1.07	0.96	
水洗 2	1	1250	650	400] 逆抓小机赶铁值抓			1.07			
水洗 1	1	1250	250	400		16	1.0		1.07	0.96	
水洗 2	1	1250	250	400	逆流水洗连续溢流				1.07		
水洗 3	1	1250	250	400				1.07			
混排废水									0.39	0.35	

表 4.2-32 8#端子连续镀镍钯金锡自动线生产废水产排情况

						秋 4.2-32 0 m列门 た:		2 D 77 70 T	1 100/15/	111111111111111111111111111111111111111				
设备	数量	长(mm)	宽(mm)	高(mm)	排放方式	工作时间(h/d)	流速 L/min	自来水 (t/d)	纯水 (t/d)	回用水 (t/d)	重复用 水(t/d)	废水量(t/d)	合计 t/d	
电解脱脂 1	1	1100	540	450									W1 前处理废水	0.96
电解脱脂 2	1	1100	540	450									W2 综合废水(其他)	0.96
电解脱脂 3	1	1100	540	450									W4 电镀镍废水(高温镍+电铸镍)	0.96
电解脱脂 4	1	1100	540	450									W5 含氰废水 (镀金)	0.96
回收	1	1100	250	450									W7 混排废水	0.35
水洗 1	1	1100	250	450		16	1.0				1.07	0.96	W2 综合废水 (镀锡)	2.88
水洗 2	1	1100	250	450	逆流水洗连续溢流						1.07			
水洗 3	1	1100	250	450						1.07				
活化 1	1	1100	500	450										
活化 2	1	990	400	410										
水洗 1	1	1100	250	450		16	1.0				1.07	0.96		
水洗 2	1	1100	250	450	逆流水洗连续溢流						1.07			
水洗 3	1	1100	250	450						1.07				
普通镍1	1	1100	1680	450										
普通镍 2	1	1100	1680	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
高溫鎳	1	1100	600	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
預鍍镍	1	820	300	550										
水洗 1	1	1100	250	450		16	1.0				1.07	0.96		
水洗 2	1	1100	250	450	逆流水洗连续溢流						1.07			
水洗 3	1	1100	250	450					1.07					
刷鍍鈀	1	820	300	550										
回收	1	1100	250	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
水洗 1	1	1100	250	450	*************************************	16	1.0				1.07	0.96		
水洗 2	1	1100	250	450	- 逆流水洗连续溢流				1.07					
镀金1	1	820	300	550										
回收	1	1100	500	450										
浸金 2	1	820	300	550										
回收	1	1100	250	450										
回收	1	1100	250	450										
	1	1	1	1	1	L			1	1	1			

回收	1	1100	250	450							
水洗 1	1	1100	250	450	逆流水洗连续溢流	16	1.0		1.07	0.96	
水洗 2	1	1100	250	450	了 <i>罗伽小</i>			1.07			
鍍錫	1	1100	1680	450							
水洗 1	1	1100	250	450		16	1.0		1.07	0.96	
水洗 2	1	1100	250	450					1.07		
水洗 3	1	1100	250	450	逆流水洗连续溢流				1.07		
水洗 4	1	1100	250	450					1.07		
水洗 5	1	1100	250	450				1.07			
水洗 1	1	1100	540	450		16	1.0		1.07	0.96	
水洗 2	1	1100	540	450	逆流水洗连续溢流				1.07		
水洗 3	1	1100	540	450				1.07			
混排废水								0.39		0.35	

表 4.2-33 9#端子连续镀镍钯金锡自动线生产废水产排情况

						-pe	, «× «/ · · · · · · · · · · ·	1 H - /4 - /4 - / /	///	111111111111111111111111111111111111111				
设备	数量	长(mm)	宽(mm)	高(mm)	排放方式	工作时间(h/d)	流速 L/min	自来水 (t/d)	纯水 (t/d)	回用水 (t/d)	重复用 水(t/d)	废水量(t/d)	合计 t/d	
电解脱脂 1	1	1100	540	450									W1 前处理废水	0.96
电解脱脂 2	1	1100	540	450									W2 综合废水 (其他)	1.92
电解脱脂 3	1	1100	540	450									W4 电镀镍废水(普通镍+预镀镍+镀镍)	0.96
电解脱脂 4	1	1100	540	450									W5 含氰废水 (镀金)	0.96
回收	1	1100	250	450									W7 混排废水	0.35
水洗 1	1	1100	250	450		16	1.0				1.07	0.96	W2 综合废水 (镀锡)	1.92
水洗 2	1	1100	250	450	逆流水洗连续溢流						1.07			
水洗 3	1	1100	250	450						1.07				
活化 1	1	1100	500	450										
活化 2	1	930	370	480										
水洗 1	1	1100	250	450		16	1.0				1.07	0.96		
水洗 2	1	1100	250	450	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						1.07			
水洗 3	1	1100	250	450	逆流水洗连续溢流					1.07				
水洗 4	1	1100	250	450						1.07				
普通镍1	1	1100	1680	450										
普通镍 2	1	1100	1680	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
高溫鎳	1	1100	600	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
預鍍镍	1	820	300	450										
水洗 1	1	1100	250	450		16	1.0				1.07	0.96		
水洗 2	1	1100	250	450							1.07			
水洗 3	1	1100	250	450					1.07					
刷鍍鈀	1	820	300	550										
回收	1	1100	250	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
水洗 1	1	1100	250	450	ング・ナー・ル・ナ・ナ・ハ・ファ	16	1.0				1.07	0.96		
水洗 2	1	1100	250	450	逆流水洗连续溢流				1.07					
镀金1	1	820	300	550										
回收	1	1100	250	450										
回收	1	1100	250	450										
镀金 2	1	820	300	550										

1100	750	450							
1100	750	450							
1100	750	450							
1100	250	450	滋滋业进 连续滋滋	16	1.0			1.07 0.96	
1100	250	450] 逻机小优迁续温机			1.07			
1100	1680	450							
1100	250	450		16	1.0			1.07 0.96	
1100	250	450	逆流水洗连续溢流					1.07	
1100	250	450				1.07			
1100	540	450		16	1.0			1.07 0.96	
1100	540	450	· · · · · · · · · · · · · · · · · · ·					1.07	
1100	540	450] 逆流水沉连续溢流 					1.07	
1100	540	450				1.07			
							0.39	0.35	
	1100 1100 1100 1100 1100 1100 1100 1100 1100 1100	1100 750 1100 750 1100 250 1100 250 1100 1680 1100 250 1100 250 1100 540 1100 540 1100 540 1100 540 1100 540	1100 750 450 1100 750 450 1100 250 450 1100 250 450 1100 1680 450 1100 250 450 1100 250 450 1100 250 450 1100 540 450 1100 540 450 1100 540 450 1100 540 450 1100 540 450	1100 750 450 1100 750 450 1100 250 450 1100 250 450 1100 1680 450 1100 250 450 1100 250 450 1100 250 450 1100 540 450 1100 540 450 1100 540 450 1100 540 450 1100 540 450 1100 540 450 1100 540 450	1100 750 450 1100 750 450 1100 250 450 1100 250 450 1100 1680 450 1100 250 450 1100 250 450 1100 250 450 1100 540 450 1100 540 450 1100 540 450 1100 540 450 1100 540 450 1100 540 450 1100 540 450	1100 750 450 1100 750 450 1100 250 450 1100 250 450 1100 1680 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 540 450 1100 540 450 1100 540 450 1100 540 450 1100 540 450	1100 750 450 1100 750 450 1100 250 450 1100 250 450 1100 1680 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 540 450 1100 540 450 1100 540 450 1100 540 450 1100 540 450 1100 540 450 1100 540 450	1100 750 450 1100 750 450 1100 250 450 1100 250 450 1100 1680 450 1100 250 450 1100 250 450 1100 250 450 1100 540 450 1100 540 450 1100 540 450 1100 540 450 1100 540 450 1100 540 450 1100 540 450 1100 540 450 1100 540 450	1100 750 450 1100 750 450 1100 250 450 1100 250 450 1100 1680 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 540 450 1100 540 450 1100 540 450 1100 540 450 1100 540 450 1100 540 450 1100 540 450 1100 540 450 1100 540 450

表 4.2-34 10#端子连续镀镍钯金锡自动线生产废水产排情况

				1		10 TOTALITY				1	_			
设备	数量	长(mm)	宽(mm)	高(mm)	排放方式	工作时间(h/d)	流速 L/min	自来水 (t/d)	纯水 (t/d)	回用水 (t/d)	重复用 水(t/d)	废水量(t/d)	合计 t/d	
电解脱脂 1	1	1100	540	450									W1 前处理废水	0.96
电解脱脂 2	1	1100	540	450									W2 综合废水(其他)	1.92
电解脱脂 3	1	1100	540	450									W4 电镀镍废水(普通镍+预镀镍+镀镍)	0.96
电解脱脂 4	1	1100	540	450									W5 含氰废水(镀金)	0.96
回收	1	1100	250	450									W7 混排废水	0.35
水洗 1	1	1100	250	450		16	1.0				1.07	0.96	W2 综合废水(镀锡)	1.92
水洗 2	1	1100	250	450							1.07			
水洗 3	1	1100	250	450						1.07				
活化 1	1	1100	500	450										
活化 2	1	1100	500	410										
水洗 1	1	1100	250	450		16	1.0				1.07	0.96		
水洗 2	1	1100	250	450							1.07			
水洗 3	1	1100	250	450						1.07				
回收	1	110	400	520										
普通镍1	1	1100	1680	450										
普通镍 2	1	1100	1680	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
高溫鎳	1	1100	600	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
預鍍镍	1	820	300	550										
水洗 1	1	1100	250	450		16	1.0				1.07	0.96		
水洗 2	1	1100	250	450							1.07			
水洗 3	1	1100	250	450					1.07					
刷鍍鈀	1	820	300	550										
回收	1	1100	250	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
水洗 1	1	1100	250	450	ングンティンは、ナイナンバンテ	16	1.0				1.07	0.96		
水洗 2	1	1100	250	450	一逆流水洗连续溢流				1.07					
镀金1	1	820	300	550										
回收	1	1100	250	450	ED INTERNAL									
回收	1	1100	250	450	- 回收利用									
浸金 2	1	820	300	550										
浸金 2	1	820	300	550										

回收	1	1100	250	450							
回收	1	1100	250	450							
回收	1	1100	250	450							
水洗 1	1	1100	250	450	│	16	1.0		1.07	0.96	
水洗 2	1	1100	250	450	逆机水机赶铁温机			1.07			
鍍錫	1	1100	1680	450							
水洗 1	1	1100	250	450		16	1.0		1.07	0.96	
水洗 2	1	1100	250	450					1.07		
水洗 3	1	1100	250	450	逆机水机赶铁值机				1.07		
水洗 4	1	1100	540	450				1.07			
水洗 1	1	1100	540	450		16	1.0		1.07	0.96	
水洗 2	1	1100	250	450					1.07		
水洗 3	1	1100	250	450				0.00	1.07		
水洗 4	1	1100	500	450				1.07			
混排废水									0.39	0.35	

表 4.2-35 11#端子连续镀镍钯金锡自动线生产废水产排情况

电解脱脂 1 1 100 540 450 电解脱脂 2 1 1100 540 450 电解脱脂 3 1 1100 540 450	量(t/d) 合计 t/d W1 前处理废水 0.96 W2 综合废水(其他) 1.92 W4 电镀镍废水(普通镍+预镀镍+镀镍) 0.96 W5 含氰废水(镀金) 0.96 W7 混排废水 0.35
电解脫脂 2 1 1100 540 450 电解脫脂 3 1 1100 540 450	W2 综合废水 (其他) 1.92 W4 电镀镍废水 (普通镍+预镀镍+镀镍) 0.96 W5 含氰废水 (镀金) 0.96
电解脱脂 3 1 1100 540 450	W4 电镀镍废水(普通镍+预镀镍+镀镍) 0.96 W5 含氰废水(镀金) 0.96
	W5 含氰废水(镀金) 0.96
1 67 80 80 80 80 80 80 80 80 80 80 80 80 80	
电解脱脂 4 1 1100 540 450	W7 混排废水 0.35
回收 1 1100 250 450	
水洗 1 1 1100 250 450 16 1.0 1.07 (0.96 W2 综合废水 (镀锡) 1.92
水洗 2 1 1100 250 450 逆流水洗连续溢流 1.07	
水洗 3 1 1100 250 450 1.07	
活化 1 1100 500 450	
活化 2 1 1100 500 410	
水洗 1 1 1100 250 450 16 1.0 1.07 (0.96
水洗 2 1 1100 250 450 逆流水洗连续溢流 1.07	
水洗 3 1 1100 250 450 1.07	
回收 1 110 400 520	
普通镍 1 1 1100 1680 450	
普通镍 2 1 1100 1680 450	
回收 1 1100 250 450	
回收 1 1100 250 450	
回收 1 1100 250 450	
高溫鎳 1 1100 600 450	
回收 1 1100 250 450	
回收 1 1100 250 450	
回收 1 1100 250 450	
預鍍镍 1 820 300 550	
水洗 1 1 1100 250 450 16 1.0 1.07 (0.96
水洗 2 1 1100 250 450 逆流水洗连续溢流 1.07	
水洗 3 1 1100 250 450 1.07	
刷鍍鈀 1 820 300 550	
回收 1 1100 250 45	
回收 1 1100 250 45	
回收 1 1100 250 45	
水洗 1 1 1100 250 450 16 10 107 (0.96
水洗 2 1 1100 250 450 皮期更换 1.07	
镀金1 1 820 300 550	
回收 1 1100 250 450	
回收 1 1100 250 450	
镀金 2 1 820 300 550	

回收	1	1100	250	450								
回收	1	1100	250	450								
回收	1	1100	250	450								
水洗 1	1	1100	250	450	 逆流水洗连续溢流	16	1.0			1.07	0.96	
水洗 2	1	1100	250	450	逆抓水机赶铁值抓			1.07				
鍍錫	1	1100	1680	450								
水洗 1	1	1100	250	450		16	1.0			1.07	0.96	
水洗 2	1	1100	250	450	逆流水洗连续溢流 -					1.07		
水洗 3	1	1100	250	450] 逆机水机迁头通机 [1.07		
水洗 4	1	1100	250	450				1.07				
水洗 1	1	1100	540	450		16	1.0			1.07	0.96	
水洗 2	1	1100	540	450	逆流水洗连续溢流					1.07		
水洗 3	1	1100	540	450] 逻机小杌廷头温机					1.07		
水洗 4	1	1100	540	450				1.07				
混排废水									0.39		0.35	

表 4.2-36 12#端子连续镀镍钯金锡自动线生产废水产排情况

设备	数量	长(mm)	宽(mm)	高(mm)	排放方式	工作时间(h/d)	流速	自来水	纯水	回用水 (t/d)		废水量(t/d)	合计 t/d	
 电解脱脂 1	1	1100	540	450			L/min	(t/d)	(t/d)	(7a)	水(t/d)		W1 前处理废水	0.96
电解脱脂 2	1	1100	540	450									W2 综合废水 (其他)	1.92
电解脱脂 3	1	1100	540	450									W4 电镀镍废水(普通镍+预镀镍+镀镍)	0.96
电解脱脂 4	1	1100	540	450									W5 含氰废水(镀金)	0.96
回收	1	1100	250	450									W7 混排废水	0.35
水洗 1	1	1100	250	450		16	1.0				1.07	0.96	W2 综合废水(镀锡)	1.92
水洗 2	1	1100	250	450	」 逆流水洗连续溢流	10	1.0				1.07	0.50	112 35 1 12 7 1 12 7	1.72
水洗 3	1	1100	250	450						1.07	1.07			-
活化	1	1100	540	450						1.07				-
水洗 1	1	1100	250	450		16	1.0				1.07	0.96		-
水洗 2	1	1100	250	450	+		110				1.07			
水洗 3	1	1100	250	450							1.07			+
水洗 4	1	820	320	500	」 逆流水洗连续溢流						1.07			+
水洗 5	1	1100	250	450							1.07			+
水洗 6	1	1100	250	450							1.07			+
水洗 7	1	1100	250	450						1.07				+
普通镍1	1	1100	1680	450										+
普通镍 2	1	1100	1680	450										
回收	1	1100	370	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
高溫鎳	1	1100	600	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
預鍍镍	1	700	400	460										
水洗 1	1	1100	250	450		16	1.0				1.07	0.96		
水洗 2	1	1100	250	450	逆流水洗连续溢流						1.07			
水洗 3	1	1100	250	450					1.07					
刷鍍鈀	1	820	310	550										
回收	1	1100	250	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
水洗 1	1	1100	250	450	逆流水洗连续溢流	16	1.0				1.07	0.96		

水洗 2	1	1100	250	450						1.07		
水洗 3	1	1100	250	450				1.07				
镀金1	1	820	310	550								
回收	1	1100	250	450								
回收	1	1100	250	450								
镀金2	1	820	310	550								
回收	1	1100	260	350								
回收	1	1100	260	350								
水洗 1	1	1100	250	450		16	1.0			1.07	0.96	
水洗 2	1	1100	250	450	」 逆流水洗连续溢流					1.07		
水洗 3	1	1100	250	450				1.07				
鍍錫1	1	1500	1100	450								
鍍錫 2	1	1100	1680	450								
水洗 1	1	1100	250	450		16	1.0			1.07	0.96	
水洗 2	1	1100	250	450	│ │ 逆流水洗连续溢流					1.07		
水洗 3	1	1100	250	450	上					1.07		
水洗 4	1	1100	250	450				1.07				
水洗 1	1	1100	540	450		16	1.0			1.07	0.96	
水洗 2	1	1100	540	450	逆流水洗连续溢流					1.07		
水洗 3	1	1100	540	450	左侧小仉炷铁值伽					1.07		
水洗 4	1	1100	540	450				1.07				
混排废水									0.39		0.35	

表 4.2-37 13#端子连续镀镍钯金锡自动线生产废水产排情况

设备	数量	长(mm)	宽(mm)	高(mm)	排放方式	工作时间(h/d)	流速 L/min	自来水 (t/d)	纯水 (t/d)	回用水 (t/d)	重复用 水(t/d)	废水量(t/d)	合计 t/d	
电解脱脂 1	1	1100	540	450			L/IIIIII	(uu)	(// //	(UU)	7,000			0.96
电解脱脂 2	1	1100	540	450									W2 综合废水(其他)	1.92
电解脱脂 3	1	1100	540	450									W4 电镀镍废水(普通镍+预镀镍+镀镍)	0.96
电解脱脂 4	1	1100	540	450									W5 含氰废水 (镀金)	0.96
回收	1	1100	250	450									W7 混排废水	0.35
水洗 1	1	1100	250	450		16	1.0				1.07	0.96	W2 综合废水 (镀锡)	1.92
水洗 2	1	1100	250	450	逆流水洗连续溢流						1.07			
水洗 3	1	1100	250	450	1					1.07				
活化	1	1100	540	450										
水洗 1	1	1100	250	450		16	1.0				1.07	0.96		
水洗 2	1	1100	250	450	逆流水洗连续溢流						1.07			
水洗 3	1	1100	250	450						1.07				
普通镍 1	1	1100	1680	450										
普通镍 2	1	1100	1680	450										
回收	1	1100	370	450										
回收	1	1100	250	450		16								
回收	1	1100	250	450										
回收	1	1100	250	450										
高溫鎳	1	1100	600	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
預鍍镍	1	700	400	460										
水洗 1	1	1100	250	450		16	1.0				1.07	0.96		
水洗 2	1	1100	250	450] 逆流水洗连续溢流 [1.07			
水洗 3	1	1100	250	450					1.07					
刷鍍鈀	1	820	520	550										
回收	1	1100	250	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
水洗 1	1	1100	250	450		16	1.0				1.07	0.96		
水洗 2	1	1100	250	450	- - 逆流水洗连续溢流 -						1.07			
水洗 3	1	1100	250	450	皮 伽小疣廷绘渔猟 						1.07			
水洗 4	1	1100	250	450					1.07					
镀金1	1	820	310	550										
回收	1	1100	250	450										

				1					T I		
回收	1	1100	250	450							
镀金2	1	820	310	550							
回收	1	1100	250	450							
回收	1	1100	250	450							
回收	1	1100	250	450							
水洗 1	1	1100	250	450		16	1.0		1.07	0.96	
水洗 2	1	1100	250	450	逆流水洗连续溢流				1.07		
水洗 3	1	1100	250	450				1.07			
鍍錫 1	1	1500	1100	450							
鍍錫 2	1	1100	1680	450							
水洗 1	1	1100	250	450		16	1.0		1.07	0.96	
水洗 2	1	1100	250	450] - 逆流水洗连续溢流				1.07		
水洗 3	1	1100	250	450	了				1.07		
水洗 4	1	1100	250	450				1.07			
水洗 1	1	1100	540	450		16	1.0		1.07	0.96	
水洗 2	1	1100	540	450	送法・大学・大学・法・法・法・法・法・法・法・法・法・法・法・法・法・法・法・法・				1.07		
水洗 3	1	1100	540	450	- 逆流水洗连续溢流 -				1.07		
水洗 4	1	1100	540	450				1.07			
混排废水									0.39	0.35	

表 4.2-38 14#端子连续镀镍钯金锡自动线生产废水产排情况

	1100 1100 1100 1100 1100 1100 1100 110	宽(mm) 540 540 540 540 250 250	高(mm) 450 450 450 450 450 450	排放方式	工作时间(h/d)	流速 L/min	自来水 (t/d)	纯水 (t/d)	回用水 (t/d)	重复用 水(t/d)	废水量(t/d)	合计 t/d	0.00
	1100 1100 1100 1100 1100 1100	540 540 540 250 250	450 450 450									7774 24 11 em ek 1.	0.06
	1100 1100 1100 1100 1100	540 540 250 250	450 450									W1 前处理废水	0.96
	1100 1100 1100 1100	540 250 250	450									W2 综合废水(其他)	1.92
	1100 1100 1100	250 250										W4 电镀镍废水(普通镍+预镀镍+镀镍)	0.96
	1100 1100	250	450									W5 含氰废水 (镀金)	0.96
L	1100				16	0.0						W7 混排废水	0.35
			450		16	1.0				1.07	0.96	W2 综合废水 (镀锡)	1.92
L	1100	250	450	逆流水洗连续溢流						1.07			
	1100	250	450						1.07				
L	1100	540	450										
1	1100	250	450		16	1.0				1.07	0.96		
1	1100	250	450	逆流水洗连续溢流						1.07			
L	1100	250	450						1.07				
L	1100	1680	450										
l	1100	1680	450										
l l	1100	370	450										
L	1100	250	450										
L	1100	250	450										
l	1100	250	450										
l	1100	600	450										
l l	1100	250	450										
L	1100	250	450										
1	1100	250	450										
l	700	400	460										
l	1100	250	450		16	1.0				1.07	0.96		
1	1100	250	450	逆流水洗连续溢流	16					1.07			
1	1100	250	450		16			1.07					
l	820	580	560										
l	1100	250	450										
l l	1100	250	450		16	1.0				1.07	0.96		
l	1100	250	450) + + + + + + + + + + + + + + + + + + +						1.07			
l	1100	250	450	- 逆流水洗连续溢流 - 						1.07			
l	1100	250	450	1				1.07					
l l	820	310	550										
l	1100	250	450										
l	1100	250	450										
l	820	310	550										
l l	1100	250	450										
		1100 1100 1100 1100 1100 1100 1100 110	1100 250 1100 250 1100 1680 1100 1680 1100 1680 1100 370 1100 250 1100 250 1100 250 1100 250 1100 250 1100 250 1100 250 1100 250 1100 250 1100 250 1100 250 1100 250 1100 250 1100 250 1100 250 1100 250 1100 250 1100 250 1100 250 1100 250 1100 250 1100 250 820 310 1100 250 820 310	1100 250 450 1100 250 450 1100 250 450 1100 1680 450 1100 1680 450 1100 370 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 <td> 1100 250 450 逆流水洗连续溢流 1100 250 450 逆流水洗连续溢流 1100 1680 450 1100 1680 450 1100 370 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 11</td> <td> 1100 250 450 逆流水洗连续溢流 16 1100 250 450 逆流水洗连续溢流 1100 1680 450 1100 1680 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 160 1100 250 450 160 1100 250 450 160 1100 250 450 160 1100 250 450 160 1100 250 450 160 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1</td> <td> 1100 250 450 逆流水洗连续溢流 16 1.0 1100 250 450 逆流水洗连续溢流 1100 1680 450 1100 1680 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 </td> <td> 1100 250 450 逆流水洗连续溢流 16</td> <td> 1100 250 450 逆流水洗连续溢流 16 1.0 1100 250 450 逆流水洗连续溢流 1100 1680 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 </td> <td> 1100 250 450 逆流水洗连续溢流 16</td> <td> 1100 250 450 逆流水洗连续溢流 16</td> <td> 1100 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 25</td> <td> 1100 250 450 250 450 26m未洗连续流</td>	1100 250 450 逆流水洗连续溢流 1100 250 450 逆流水洗连续溢流 1100 1680 450 1100 1680 450 1100 370 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 11	1100 250 450 逆流水洗连续溢流 16 1100 250 450 逆流水洗连续溢流 1100 1680 450 1100 1680 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 160 1100 250 450 160 1100 250 450 160 1100 250 450 160 1100 250 450 160 1100 250 450 160 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1	1100 250 450 逆流水洗连续溢流 16 1.0 1100 250 450 逆流水洗连续溢流 1100 1680 450 1100 1680 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450	1100 250 450 逆流水洗连续溢流 16	1100 250 450 逆流水洗连续溢流 16 1.0 1100 250 450 逆流水洗连续溢流 1100 1680 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450 1100 250 450	1100 250 450 逆流水洗连续溢流 16	1100 250 450 逆流水洗连续溢流 16	1100 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 450 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 25	1100 250 450 250 450 26m未洗连续流

回收	1	1100	250	450							
回收	1	1100	250	450							
水洗 1	1	1100	250	450		16	1.0			1.07	0.96
水洗 2	1	1100	250	450	逆流水洗连续溢流					1.07	
水洗 3	1	1100	250	450				1.07			
镀锡 1	1	1600	1100	470							
镀锡 2	1	1100	1680	450							
水洗 1	1	1100	250	450		16	1.0			1.07	0.96
水洗 2	1	1100	250	450	逆流水洗连续溢流					1.07	
水洗 3	1	1100	250	450] 逻机小优迁铁温机					1.07	
水洗 4	1	1100	540	450				1.07			
水洗 1	1	1100	540	450		16	1.0			1.07	0.96
水洗 2	1	1100	250	450	逆流水洗连续溢流					1.07	
水洗 3	1	1100	250	450] 是抓小机赶续温机					1.07	
水洗 4	1	1100	540	450				1.07			
混排废水									0.39		0.35

表 4.2-39 15#端子连续镀镍钯金锡自动线生产废水产排情况

设备	数量	长(mm)	宽(mm)	高(mm)	排放方式	工作时间(h/d)	流速 L/min	自来水 (t/d)	纯水 (t/d)	回用水 (t/d)	重复用 水(t/d)	废水量(t/d)	合计 t/d	
电解脱脂 1	1	1100	540	450									W1 前处理废水	0.96
电解脱脂 2	1	1100	540	450									W2 综合废水(其他)	1.92
电解脱脂 3	1	1100	540	450									W4 电镀镍废水(普通镍+预镀镍+镀镍)	0.96
电解脱脂 4	1	1100	540	450									W5 含氰废水 (镀金)	0.96
回收	1	1100	250	450									W7 混排废水	0.35
水洗 1	1	1100	250	450		16	1.0				1.07	0.96	W2 综合废水 (镀锡)	1.92
水洗 2	1	1100	250	450	逆流水洗连续溢流						1.07			
水洗 3	1	1100	250	450						1.07				
活化 1	1	1100	500	450										
活化 2	1	1100	500	410										
水洗 1	1	1100	250	450		16	1.0				1.07	0.96		
水洗 2	1	1100	250	450	逆流水洗连续溢流	16					1.07			
水洗 3	1	1100	250	450		16				1.07				
回收	1	110	400	520										
普通镍 1	1	1100	1680	450										
普通镍 2	1	1100	1680	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
高溫鎳	1	1100	600	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
預鍍镍	1	820	300	550										
水洗 1	1	1100	250	450		16	1.0				1.07	0.96		
水洗 2	1	1100	250	450	逆流水洗连续溢流						1.07			
水洗 3	1	1100	250	450					1.07					
刷鍍鈀	1	820	300	550										
回收	1	1100	250	45										
回收	1	1100	250	45										
回收	1	1100	250	45										
水洗 1	1	1100	250	450	ンメンナーレット・ナーンと・ナー	16	1.0				1.07	0.96		
水洗 2	1	1100	250	450	- 逆流水洗连续溢流				1.07					
镀金1	1	820	300	550										
回收	1	1100	250	450										
回收	1	1100	250	450										
镀金2	1	820	300	550										

回收	1	1100	250	450								
回收	1	1100	250	450								
回收	1	1100	250	450								
水洗 1	1	1100	250	450	送法人业法法法法	16	1.0			1.07	0.96	
水洗 2	1	1100	250	450	- 逆流水洗连续溢流 -			1.07				
鍍錫	1	1100	1680	450								
水洗 1	1	1100	250	450		16	1.0			1.07	0.96	
水洗 2	1	1100	250	450	 逆流水洗连续溢流					1.07		
水洗 3	1	1100	250	450] 逻机小优迁终温机					1.07		
水洗 4	1	1100	250	450				1.07				
水洗 1	1	1100	540	450		16	1.0			1.07	0.96	
水洗 2	1	1100	540	450	*************************************					1.07		
水洗 3	1	1100	540	450	- 逆流水洗连续溢流 -					1.07		
水洗 4	1	1100	540	450				1.07				
混排废水	1								0.39		0.35	

表 4.2-40 16#端子连续镀镍钯金锡自动线生产废水产排情况

设备	数量	长(mm)	宽(mm)	高(mm)	排放方式	工作时间(h/d)	流速 L/min	自来水 (t/d)	纯水 (t/d)	回用水 (t/d)	重复用 水(t/d)	废水量(t/d)	合计 t/d	
电解脱脂 1	1	1100	540	450			L/ IIIII	(00)	(00)	(va)	7,100		W1 前处理废水	0.96
电解脱脂 2	1	1100	540	450									W2 综合废水 (其他)	1.92
电解脱脂 3	1	1100	540	450									W4 电镀镍废水(普通镍+预镀镍+镀镍)	0.96
电解脱脂 4	1	1100	540	450									W5 含氰废水 (镀金)	0.96
回收	1	1100	250	450									W7 混排废水	0.35
 水洗 1	1	1100	250	450		16	1.0				1.07	0.96	W2 综合废水 (镀锡)	1.92
水洗 2	1	1100	250	450	 逆流水洗连续溢流						1.07			
水洗 3	1	1100	250	450						1.07				
 活化 1	1	1100	500	450										
活化 2	1	1100	500	410										
水洗 1	1	1100	250	450		16	1.0				1.07	0.96		
水洗 2	1	1100	250	450	 逆流水洗连续溢流						1.07			
水洗 3	1	1100	250	450						1.07				
回收	1	110	400	520										
普通镍1	1	1100	1680	450										
普通镍 2	1	1100	1680	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
高溫鎳	1	1100	600	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
回收	1	1100	250	450										
預鍍镍	1	820	300	550										
水洗 1	1	1100	250	450		16	1.0				1.07	0.96		
水洗 2	1	1100	250	450	逆流水洗连续溢流						1.07			
水洗3	1	1100	250	450					1.07					
刷鍍鈀	1	820	300	550										
回收	1	1100	250	45										
回收	1	1100	250	45										
回收	1	1100	250	45										
水洗 1	1	1100	250	450	举法小姓子生业之	16	1.0				1.07	0.96		
水洗 2	1	1100	250	450	- 逆流水洗连续溢流 -				1.07					
镀金1	1	820	300	550										
回收	1	1100	250	450										
回收	1	1100	250	450										
镀金2	1	820	300	550										

回收	1	1100	250	450							
回收	1	1100	250	450							
回收	1	1100	250	450							
水洗 1	1	1100	250	450	 逆流水洗连续溢流	16	1.0		1.07	0.96	
水洗 2	1	1100	250	450	逆抓水机赶续温机			1.07			
鍍錫	1	1100	1680	450							
水洗 1	1	1100	250	450		16	1.0		1.07	0.96	
水洗 2	1	1100	250	450	│ │ │ 逆流水洗连续溢流 │				1.07		
水洗 3	1	1100	250	450					1.07		
水洗 4	1	1100	250	450				1.07			
水洗 1	1	1100	540	450		16	1.0		1.07	0.96	
水洗 2	1	1100	540	450	̄ ̄逆流水洗连续溢流 ̄				1.07		
水洗 3	1	1100	540	450] 埋机水机赶续温机 [1.07		
水洗 4	1	1100	500	450				1.07			
混排废水									0.39	0.35	
· · · · · · · · · · · · · · · · · · ·			·		·	·		·	·	·	

表 4.2-41 17#端子连续镀镍锡自动线生产废水产排情况

							流速	自来水	纯水	回用水	重复用			
设备	数量	长(mm)	宽(mm)	高(mm)	排放方式	工作时间(h/d)	L/min		(t/d)	(t/d)	业 (t/d)	废水量(t/d)	合计 t/d	
电解脱脂 1	1	1120	600	450									W1 前处理废水	0.96
电解脱脂 2	1	1120	560	500									W2 综合废水(其他)	0.96
电解脱脂 3	1	1120	560	500									W4 电镀镍废水(普通镍+预镀镍+镀镍)	0.96
电解脱脂 4	1	1120	560	500									W4 电镀镍废水(高温镍+电铸镍)	0.96
回收	1	1120	220	500									W7 混排废水	0.40
电解脱脂 5	1	1120	560	500									W2 综合废水 (镀锡)	3.84
水洗 1	1	1120	220	500		16	1.0				1.07	0.96		
水洗 2	1	1120	220	500	逆流水洗连续溢流						1.07			
水洗 3	1	1120	220	500						1.07				
活化	1	1120	560	500										
水洗 1	1	1120	220	500		16	1.0				1.07	0.96		
水洗 2	1	1120	220	500	逆流水洗连续溢流						1.07			
水洗 3	1	1120	220	500						1.07				
预镀镍1	1	1120	560	500										
预镀镍 2	1	1120	400	420										
回收	1	1100	220	500										
水洗 1	1	1100	220	500	送法小业法法法法	16	1.0				1.07	0.96		
水洗 2	1	1100	220	500	- 逆流水洗连续溢流 -				1.07					
预镀镍	1	900	350	490										
普通镍1	1	1120	1520	500										
普通镍 2	1	1120	1520	500										
回收	1	1120	220	500										
回收	1	1120	220	500										
普通镍3	1	1140	820	520										24.98
回收	1	1120	220	500										
回收	1	1120	220	500										
高温镍	1	1120	560	500										
回收	1	1120	220	500										
回收	1	1120	220	500										
回收	1	1120	220	500										
回收	1	1120	220	500										
回收	1	1120	220	500										
回收	1	1120	220	500										
水洗 1	1	1120	220	500		16	1.0				1.07	0.96		
水洗 2	1	1120	220	500	逆流水洗连续溢流						1.07			
水洗 3	1	1120	220	500]				1.07					
镀锡	1	1120	1200	500										

水洗 1	1	1120	220	500		16	1.0			1.07	0.96	
水洗 2	1	1120	220	500	逆流水洗连续溢流					1.07		
水洗 3	1	1120	220	500				1.07				
水洗 1	1	1120	220	500		16	1.0			1.07	0.96	
水洗 2	1	1120	220	500	逆流水洗连续溢流					1.07		
水洗 3	1	1120	220	500				1.07				
水洗 1	1	1120	400	500		16	1.0			1.07	0.96	
水洗 2	1	1120	400	500	逆流水洗连续溢流					1.07		
水洗 3	1	1120	400	500				1.07				
水洗 1	1	780	220	500		16	1.0			1.07	0.96	
水洗 2	1	780	220	360	逆流水洗连续溢流					1.07		
水洗 3	1	780	220	360				1.07				
混排废水									0.45		0.40	

表 4.2-42 18#端子连续镀镍锡自动线生产废水产排情况

设备	数量	长(mm)	宽(mm)	高(mm)	排放方式	工作时间(h/d)	流速	自来水	纯水	回用水		废水量(t/d)	合计 t/d	
以田 3	双里	K(IIIII)	火·(IIIII)	FJ(IIIII)	11F/JX /J 1X	T1541141 (IVU)	L/min	(t/d)	(t/d)	(t/d)	水(t/d)	/ / / / / / / / / / / / /	⊟ II UU	
电解脱脂 1	1	1120	600	450									W1 前处理废水	0.96
电解脱脂 2	1	1120	560	500									W2 综合废水(其他)	0.96
电解脱脂 3	1	1120	560	500									W4 电镀镍废水(普通镍+预镀镍+镀镍)	0.96
电解脱脂 4	1	1120	560	500									W4 电镀镍废水(高温镍+电铸镍)	0.96
回收	1	1120	220	500	定期更换	16							W7 混排废水	0.40
电解脱脂 5	1	1120	560	500									W2 综合废水 (镀锡)	3.84
水洗 1	1	1120	220	500		16	1.0				1.07	0.96		
水洗 2	1	1120	220	500	」 逆流水洗连续溢流						1.07			
水洗 3	1	1120	220	500						1.07				
活化	1	1120	560	500										
水洗 1	1	1120	220	500		16	1.0				1.07	0.96		
水洗 2	1	1120	220	500	逆流水洗连续溢流						1.07			
水洗 3	1	1120	220	500						1.07				
预镀镍1	1	1120	560	500										
预镀镍 2	1	1120	400	420										
回收	1	1100	220	500										
水洗 1	1	1100	220	500)关次。1、24. 大(土)关(大	16	1.0				1.07	0.96		
水洗 2	1	1100	220	500	- 逆流水洗连续溢流 -	1			1.07					
预镀镍	1	900	350	490										
普通镍 1	1	1120	1520	500										
普通镍 2	1	1120	1520	500										
回收	1	1120	220	500										
回收	1	1120	220	500										
普通镍 3	1	1140	820	520										
回收	1	1120	220	500										
回收	1	1120	220	500										
高温镍	1	1120	560	500										
回收	1	1120	220	500										
回收	1	1120	220	500										
回收	1	1120	220	500										
回收	1	1120	220	500										
回收	1	1120	220	500										
回收	1	1120	220	500										
水洗 1	1	1120	220	500		16	1.0				1.07	0.96		
水洗 2	1	1120	220	500	 逆流水洗连续溢流						1.07			
水洗 3	1	1120	220	500	1				1.07					
镀锡	1	1120	1200	500										

水洗 1	1	1120	220	500		16	1.0			1.07	0.96	
水洗 2	1	1120	220	500	逆流水洗连续溢流					1.07		
水洗 3	1	1120	220	500				1.07				
水洗 1	1	1120	220	500		16	1.0			1.07	0.96	
水洗 2	1	1120	220	500	逆流水洗连续溢流					1.07		
水洗 3	1	1120	220	500				1.07				
水洗 1	1	1120	450	500		16	1.0			1.07	0.96	
水洗 2	1	1120	400	500	逆流水洗连续溢流					1.07		
水洗 3	1	1120	400	500				1.07				
水洗 1	1	1120	450	500		16	1.0			1.07	0.96	
水洗 2	1	780	220	360	逆流水洗连续溢流					1.07		
水洗 3	1	780	220	360				1.07				
混排废水									0.45		0.40	

表 4.2-43 19#端子连续镀铜镍锡金自动线生产废水产排情况

设备	数量	长(mm)	宽(mm)	高(mm)	排放方式	工作时间(h/d)	流速	自来水	纯水	回用水	重复用	废水量(t/d)	合计 t/d	
		`	`	·			L/min	(t/d)	(t/d)	(t/d)	水 (t/d)			1.02
超聲波脫脂1	1	600	600	800									W1 前处理废水	1.92
超聲波脫脂 2	1	700	700	750		1.6	1.0				1.07	0.06	W2 综合废水(其他)	1.92
水洗 1	1	580	220	440	逆流水洗连续溢流	16	1.0	1.05			1.07	0.96	W4 电镀镍废水(普通镍+预镀镍+镀镍)	1.92
水洗 2	1	580	220	440				1.07					W5 含氰废水 (镀金)	0.96
超聲波脫脂 3	1	780	540	380									W7 混排废水	0.40
电解脱脂 1	1	780	540	380									W2 综合废水(镀锡)	0.96
电解脱脂 2	1	780	540	380										
水洗 1	1	1180	180	380		16	1.0				1.07	0.96		
水洗 2	1	1180	180	380	逆流水洗连续溢流						1.07			
水洗 3	1	1180	180	380						1.07				
活化	1	450	450	500										
水洗 1	1	450	220	500		16	1.0				1.07	0.96		
水洗 2	1	450	220	500	│ │ 逆流水洗连续溢流						1.07			
水洗 3	1	450	220	500	之机外机处实证机						1.07			
水洗 4	1	450	220	500						1.07				
預鍍鎳	1	780	540	380										
水洗 1	1	1180	180	380		16	1.0				1.07	0.96		
水洗 2	1	1180	180	380	逆流水洗连续溢流						1.07			
水洗 3	1	1180	180	380					1.07					
酸铜	1	600	720	600										
水洗 1	1	560	250	580		16	1.0				1.07	0.96		
水洗 2	1	560	250	580							1.07			
水洗 3	1	560	250	580	逆流水洗连续溢流						1.07			
水洗 4	1	900	230	530							1.07			
水洗 5	1	900	230	530					1.07					
普通镍1	1	780	540	380										
普通镍 2	1	770	540	380										
回收	1	1180	270	380										
回收	1	1180	270	380										
光亮镍	1	1100	700	650										
預鍍鎳	1	1570	430	600										
普通镍	1	1020	430	560										
水洗 1	1	1180	180	380		16	1.0				1.07	0.96		
水洗 2	1	1180	180	380	→ 逆流水洗连续溢流						1.07			
水洗 3	1	1180	180	380					1.07		,			
鍍錫	1	980	540	380										
水洗 1	1	1180	180	380	逆流水洗连续溢流	16	1.0				1.07	0.96		
/1/1/1/1	1 1	1100	100	300	~ いいかりいんぶ	10	1.0			1	1.07	0.70		

水洗 2	1	1180	180	380		16				1.07	
水洗 3	1	1180	180	380		16		1.07			
镀金	1	980	580	480							
回收	1	1180	180	380							
回收	1	1180	180	380							
回收	1	1180	180	380							
水洗 1	1	370	540	380		16	1.0			1.07 0.96	
水洗 2	1	1180	180	380						1.07	
水洗 3	1	1180	180	380	- 逆流水洗连续溢流 ·					1.07	
水洗 4	1	1180	180	380	逻机水机建铁温机					1.07	
水洗 5	1	780	270	380						1.07	
水洗 6	1	780	270	380				1.07			
混排废水									0.45	0.40	

表 4.2-44 20#挂镀镍铬半自动线生产废水产排情况

		1	1		1	Λ 1.2-11 20π								
设备	数量	长(mm)	宽(mm)	高(mm)	排放方式	工作时间(h/d)	流速 L/min	自来水 (t/d)	纯水 (t/d)	回用水 (t/d)	重复用 水(t/d)	废水量(t/d)	合计 t/d	
热浸脱脂	1	2600	1500	1200									W1 前处理废水	7.68
水洗	1	2600	700	1200	连续溢流	8	4.0			2.13		1.92	W2 综合废水(其他)	3.84
超声波脱脂	1	2600	800	1200									W3 含铬废水	5.76
水洗 1	1	2600	700	1200)	8	4.0				2.13	1.92	W4 电镀镍废水(普通镍+预镀镍+镀镍)	3.84
水洗 2	1	2600	700	1200	一 逆流水洗连续溢流					2.13			W7 混排废水	1.11
电解脱脂	1	2600	1200	1200										
水洗 1	1	2600	700	1200		8	4.0				2.13	1.92		
水洗 2	1	2600	700	1200	逆流水洗连续溢流						2.13			
水洗 3	1	2600	700	1200						2.13				
活化	1	2600	1200	1200										
水洗 1	1	2600	520	1200		8	4.0				2.13	1.92		
水洗 2	1	2600	520	1200	逆流水洗连续溢流						2.13			
水洗 3	1	2600	520	1200						2.13				
电解脱脂	1	2600	1200	1200										
水洗 1	1	2600	700	1200		8	4.0				2.13	1.92		
水洗 2	1	2600	700	1200	逆流水洗连续溢流						2.13			
水洗 3	1	2600	700	1200						2.13				
化学抛光	1	2600	700	1200										
水洗 1	1	2600	700	1200		8	4.0				2.13	1.92		
水洗 2	1	2600	700	1200	逆流水洗连续溢流						2.13			
水洗 3	1	2600	700	1200						2.13				
预镀镍	1	2600	700	1200										
水洗	1	2600	520	1200	连续溢流	8	4.0			2.13		1.92		
普通镍	1	2600	1300	1200										
普通镍	1	2600	1300	1200										
水洗 1	1	2600	700	1200		8	4.0				2.13	1.92		
水洗 2	1	2600	700	1200	逆流水洗连续溢流						2.13			
水洗 3	1	2600	700	1200					2.13					
镀铬	1	2600	700	1200										
水洗 1	1	2600	700	1200		8	4.0				2.13	1.92		
水洗 2	1	2600	700	1200							2.13			
水洗 3	1	2600	700	1200	逆流水洗连续溢流						2.13			
水洗 4	1	2600	700	1200							2.13			
水洗 5	1	2600	700	1200					2.13					
水洗 1	1	2600	700	1200		8	4.0				2.13	1.92		
水洗 2	1	2600	700	1200	逆流水洗连续溢流						2.13			
水洗 3	1	2600	700	1200							2.13			
	1	1		1		<u> </u>		I .	<u> </u>	1		l		

水洗 4	1	2600	700	1200				2.13				
水洗 1	1	2600	700	1200		8	4.0			2.13	1.92	
水洗 2	1	2600	700	1200	逆流水洗连续溢流					2.13		
水洗 3	1	2600	800	1200] 逆机小爪迁续温机					2.13		
水洗 4	1	2600	800	600				2.13				
混排废水									1.24		1.11	

表 4.2-45 21#连续镀铜镍银自动线生产废水产排情况

						` `		1,7,7,1			7. C. H.			
设备	数量	长(mm)	宽(mm)	高(mm)	排放方式	工作时间(h/d)	流速 L/min	自来水 (t/d)	纯水 (t/d)	回用水 (t/d)	重复用 水(t/d)	废水量(t/d)	合计 t/d	
除油 1	1	1120	560	500			L/ IIIII	(00)	(44)	(44)	7,1000		W1 前处理废水	0.96
除油 2	1	1120	560	500									W2 综合废水(其他)	6.72
除油3	1	1120	560	500									W4 电镀镍废水(普通镍+预镀镍+镀镍)	0.96
除油 4	1	1120	560	500									W5 含氰废水 (镀金之外)	0.96
回收	1	1120	220	500		16	1.0						W6 含银废水	0.96
水洗 1	1	1120	220	500		16	1.0				1.07	0.96	W7 混排废水	0.56
水洗 2	1	1120	220	500							1.07			
水洗 3	1	1120	220	500						1.07				
活化	1	1120	560	500										
水洗	1	1120	220	500	连续溢流	16	1.0			1.07		0.96		
活化	1	1120	560	500										
水洗	1	1120	450	500	连续溢流	16	1.0			1.07		0.96		
碱铜	1	1120	560	500										
水洗 1	1	1120	220	500		16	1.0				1.07	0.96		
水洗 2	1	1120	220	500)						1.07			
水洗 3	1	1120	220	500	- 逆流水洗连续溢流						1.07			
水洗 4	1	1120	220	500						1.07				
酸铜	1	1120	1120	500										
回收	1	1120	220	500										
水洗 1	1	1120	440	500	*************************************	16	1.0				1.07	0.96		
水洗 2	1	1120	440	500	- 逆流水洗连续溢流					1.07				
普通镍	1	1120	1520	500										
水洗 1	1	1120	450	500		16	1.0				1.07	0.96		
水洗 2	1	1120	220	500	*************************************						1.07			
水洗 3	1	1120	220	500	- 逆流水洗连续溢流						1.07			
水洗 4	1	1120	220	500						1.07				
活化	1	1120	560	500										
水洗 1	1	1120	220	500		16	1.0				1.07	0.96		
水洗 2	1	1120	220	500	送法小州大陆兴法						1.07			
水洗 3	1	1120	220	500	- 逆流水洗连续溢流						1.07			
水洗 4	1	1120	220	500						1.07				
預鍍銀	1	1120	560	500										
回收	1	1120	660	500										
镀银1	1	1120	1100	500										
镀银 2	1	1120	1100	500										
水洗 1	1	1120	220	500	法法少进 法性法法	16	1.0				1.07	0.96		
水洗 2	1	1120	220	500	- 逆流水洗连续溢流						1.07			

水洗 3	1	1120	220	500						1.07			
水洗 4	1	1120	440	500				1.07					
脱銀 1	1	1120	560	500									
脱銀 2	1	1120	560	500									
水洗 1	1	1120	220	500	*************************************	16	1.0			1.07	0.96		
水洗 2	1	1120	440	500	- 逆流水洗连续溢流 -			1.07					
銀保護	1	1120	560	500									
水洗 1	1	1120	220	500		16	1.0			1.07	0.96		
水洗 2	1	1120	220	500	*************************************					1.07			
水洗 3	1	1120	220	500	- 逆流水洗连续溢流 -			1.07					
水洗 4	1	1120	220	500			1.0			1.07	0.96		
水洗 1	1	1120	560	500		16				1.07			
水洗 2	1	1120	560	500	逆流水洗连续溢流					1.07			
水洗 3	1	1120	560	500]			1.07					
混排废水									0.62		0.56		

表 4.2-46 22#端子连续镀镍钯金铑钉自动线生产废水产排情况

设备	数量	长(mm)	宽(mm)	高(mm)	排放方式	工作时间(h/d)	流速 L/min	自来水 (t/d)	纯水 (t/d)	回用水 (t/d)		废水量(t/d)	合计 t/d	
除油 1	1	1120	560	500									W1 前处理废水	0.96
除油 2	1	1120	560	500									W2 综合废水(其他)	3.84
除油 3	1	1120	560	500									W4 电镀镍废水(普通镍+预镀镍+镀镍)	0.96
除油 4	1	1120	560	500									W5 含氰废水 (镀金)	0.96
回收	1	1120	300	500									W7 混排废水	0.30
水洗 1	1	1120	300	500	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	16	1.0				1.07	0.96		
水洗 2	1	1120	300	500	一 逆流水洗连续溢流					1.07				
活化	1	1120	560	500										
水洗 1	1	1120	300	500		16	1.0				1.07	0.96		
水洗 2	1	1120	300	500	┛ ┃ 逆流水洗连续溢流 ┃						1.07			
水洗 3	1	1120	300	500						1.07				
普通镍	1	1640	1300	450										
普通镍	1	1640	1300	450										
回收	1	1120	300	500										
回收	1	1120	300	500										
水洗 1	1	1120	300	500		16	1.0				1.07	0.96		
水洗 2	1	1120	300	500	一 逆流水洗连续溢流				1.07					
刷镀钯	1	1120	1000	500										
回收	1	1120	300	500										
回收	1	1120	300	500										
水洗 1	1	1120	300	500	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	16	1.0				1.07	0.96		
水洗 2	1	1120	300	500	一 逆流水洗连续溢流				1.07					
鍍金	1	1120	1000	500										
回收	1	1120	300	500										
回收	1	1120	300	500										
水洗 1	1	1120	300	500	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	16	1.0				1.07	0.96		
水洗 2	1	1120	300	500	一 逆流水洗连续溢流	1			1.07					
鍍銠釕	1	1550	1300	500										
回收	1	1300	390	450										
回收	1	1300	390	450										
水洗 1	1	1300	310	450		16	1.0				1.07	0.96		
水洗 2	1	1300	310	450							1.07			
水洗 3	1	1300	310	450	→ 逆流水洗连续溢流 →						1.07			
水洗 4	1	1300	310	450					1.07					
水洗 1	1	1300	310	450		16	1.0				1.07	0.96		
水洗 2	1	1300	310	450	□ □ 逆流水洗连续溢流 □				1.07		1.07			
水洗 3	1	1300	320	450]						1.07			

水洗 4	1	1100	320	450					1.07	
水洗 5	1	1300	390	450			1.07			
混排废水								0.34	0.30	

表 4.2-47 连续电泳半自动线生产废水产排情况

设备	数量	长(mm)	宽(mm)	高(mm)	总体积 (m³)	有效容积(m³)	排放方 式	工作时间(h/d)	更换频率(次/天)	自来水	纯水	回用水	废水量(t/d)	合计 t/d	
除油1	1	1120	560	500	0.31	0.16								W1 前处理废水	3.78
除油 2	1	1120	560	500	0.31	0.16									
水洗1	1	1120	300	500	0.17	0.08	定期更	16	3			0.28	0.25		
水洗 2	1	1120	300	500	0.17	0.08	上	16	3			0.28	0.25		
水洗3	1	1120	300	500	0.17	0.08	3天	16	3			0.28	0.25		
烘干		/	/	/											
電泳	1	1300	800	500	0.52	0.26									
水洗1	1	1300	620	500	0.40	0.20	定期更	16	3		0.67		0.60		
水洗 2	1	1300	620	500	0.40	0.20	产	16	3		0.67		0.60		
水洗3	1	1300	620	500	0.40	0.20	7天	16	3		0.67		0.60		
水洗 4	1	1300	620	500	0.40	0.20	定期更	16	3		0.67		0.60		
水洗 5	1	1300	620	500	0.40	0.20	换	16	3		0.67		0.60		

表 4.2-48 水转印线生产废水产排情况

生产线	设备	数量	长(mm)	宽(mm)	高(mm)	总体积 (m³)	有效容积(m3)	排放方式	工作时间(h/d)	更换频率 (次/天)	自来水	纯水	回用水	废水量(t/d)	合计 t/d	
	除油1	1	1120	560	500	0.31	0.25								W1 前处理废水	1.61
	除油 2	1	1120	560	500	0.31	0.25									
水	水洗 1	1	1120	300	500	0.17	0.13		16	3			0.45	0.40		
转	水洗 2	1	1120	300	500	0.17	0.13	定期更换	16	3			0.45	0.40		
印	水洗3	1	1120	300	500	0.17	0.13		16	3			0.45	0.40		
线	转印	1	1120	1100	500	0.62	0.49									
	水洗	1	1120	300	500	0.17	0.13	定期更换	16	3	0.45			0.40		
	烘干															

表 4.2-49 23#电铸镍半自动线生产废水产排情况

设备	数量	长(mm)	宽(mm)	高(mm)	总体积(m3)	有效容积 (m³)	排放方式	工作时间(h/d)	更换频率(次/	自来	纯水	回用	废水量(t/d)		
Д В	<u> </u>	PC(IIIII)	ر ۱۱۱۱۱۱)	led (111111)	ZEVIT-IV (IIIS)	17% L (M)	111/10/17 24		天)	水水	>0/10	水	次 <u>八</u> 里(100)		
除油 1	1	1120	560	500	0.31	0.28			7.0	7.4				W1 前处理废水	0.45
水洗	1	1120	300	500	0.17	0.15	定期更换	16	0.5			0.08	0.08	W2 综合废水(其他)	0.53
除油 2	1	1120	560	500	0.31	0.28								W3 含铬废水	1.29
水洗	1	1120	300	500	0.17	0.15	定期更换	16	0.5			0.08	0.08	W4 电镀镍废水(普通镍+预镀镍+镀镍)	0.30
除油 3	1	1120	560	500	0.31	0.28								W4 电镀镍废水(高温镍+电铸镍)	0.45
水洗 1	1	1120	300	500	0.17	0.15		16	0.5			0.08	0.08	W7 混排废水	0.11
水洗 2	1	1120	300	500	0.17	0.15	户₩I 正 ₩		0.5			0.08	0.08		
水洗 3	1	1120	300	500	0.17	0.15	定期更换		0.5			0.08	0.08		
水洗 4	1	1120	300	500	0.17	0.15			0.5			0.08	0.08		
活化	1	1120	560	500	0.31	0.28									
水洗 1	1	1120	300	500	0.17	0.15		16	0.5			0.08	0.08		
水洗 2	1	1120	300	500	0.17	0.15	定期更换	16	0.5			0.08	0.08		
水洗 3	1	1120	300	500	0.17	0.15		16	0.5			0.08	0.08		
钝化	1	1120	560	500	0.31	0.28									
水洗 1	1	1120	300	500	0.17	0.15		16	0.5			0.08	0.08		
水洗 2	1	1120	300	500	0.17	0.15	定期更换	16	0.5			0.08	0.08		
水洗 3	1	1120	300	500	0.17	0.15		16	0.5			0.08	0.08		
電鑄鎳 1	2	1640	1300	450	0.96	0.86									
電鑄鎳 2	2	1640	1300	450	0.96	0.86									
水洗 1	1	1120	300	500	0.17	0.15		16	0.5			0.08	0.08		
水洗 2	1	1120	300	500	0.17	0.15	定期更换	16	0.5			0.08	0.08		
水洗 3	1	1120	300	500	0.17	0.15		16	0.5			0.08	0.08		
脫膜	1	1120	560												
水洗 1	1	1120	300	500	0.17	0.15		16	0.5			0.08	0.08		
水洗 2	1	1120	300	500	0.17	0.15	定期更换	16	0.5			0.08	0.08		
水洗 3	1	1120	300	500	0.17	0.15		16	0.5			0.08	0.08		
預鍍鎳	1	1120	560	500	0.31	0.28									
水洗 1	1	1120	300	500	0.17	0.15		16	0.5			0.08	0.08		
水洗 2	1	1120	300	500	0.17	0.15	空粗再捣	16	0.5			0.08	0.08		
水洗 3	1	1120	300	500	0.17	0.15	定期更换	16	0.5			0.08	0.08		
水洗 4	1	1120	300	500	0.17	0.15		16	0.5			0.08	0.08		
酸銅	1	1640	1300	450	0.96	0.86									
水洗 1	1	1120	300	500	0.17	0.15		16	0.5			0.08	0.08		
水洗 2	1	1120	300	500	0.17	0.15	空期重協	16	0.5			0.08	0.08		
水洗 3	1	1120	300	500	0.17	0.15	定期更换	16	0.5			0.08	0.08		
水洗 4	1	1120	300	500	0.17	0.15		16	0.5			0.08	0.08		

钝化	1	1640	1300	500	1.07	0.96					
水洗 1	1	1300	390	500	0.25	0.23		16	0.5	0.13	0.11
水洗 2	1	1300	390	500	0.25	0.23		16	0.5	0.13	0.11
水洗 3	1	1300	620	500	0.40	0.36		16	0.5	0.20	0.18
水洗 4	1	1300	620	500	0.40	0.36	定期更换	16	0.5	0.20	0.18
水洗 5	1	1300	620	500	0.40	0.36	上	16	0.5	0.20	0.18
水洗 6	1	1300	320	500	0.21	0.19		16	0.5	0.10	0.09
水洗 7	1	1100	320	500	0.18	0.16		16	0.5	0.09	0.08
水洗 8	1	1300	390	500	0.25	0.23		16	0.5	0.13	0.11
混排废水											0.12 0.11

表 4.2-50 24#塑胶挂镀铜镍铬自动线生产废水产排情况

							2/04422 904 114	окт н : 74-2	1 ///	-7 411 114 90				
设备	数量	长(mm)	宽(mm)	高(mm)	排放方式	工作时间(h/d)	流速 L/min	自来水 (t/d)	纯水 (t/d)	回用水 (t/d)	重复用 水 (t/d)	废水量(t/d)	合计 t/d	
除油	1	1000	800	1000									W1 前处理废水	2.40
水洗	1	800	800	1000	连续流	16	2.5			2.67		2.40	W2 综合废水(其他)	9.60
粗化	1	1500	800	1000									W3 含铬废水	9.60
水洗 1	1	800	800	1000		16	2.5				2.67	2.40	W4 电镀镍废水(普通镍+预镀镍+镀镍)	4.80
水洗 2	1	800	800	1000	逆流水洗连续溢流						2.67		W7 混排废水	1.52
水洗 3	1	800	800	1000						2.67			W8 化学镍废水	2.40
还原	1	1500	800	1000										
水洗 1	1	800	800	1000		16	2.5				2.67	2.40		
水洗 2	1	800	800	1000	逆流水洗连续溢流						2.67			
水洗 3	1	800	800	1000						2.67				
沉钯	1	1500	800	1000										
水洗	1	800	800	1000	连续流	16	2.5			2.67		2.40		
解胶	1	1500	800	1000										
水洗 1	1	800	800	1000	│ │ 逆流水洗连续溢流	16	2.5				2.67	2.40		
水洗 2	1	800	800	1000	型机小机迁铁值机					2.67				
化学镍	1	3000	800	1000										
水洗 1	1	800	800	1000		16	2.5				2.67	2.40		
水洗 2	1	800	800	1000	│ │ 逆流水洗连续溢流						2.67			
水洗 3	1	800	800	1000	· · · · · · · · · · · · · · · · · · ·						2.67			
水洗 4	1	800	800	1000						2.67				
镀镍	1	3000	800	1000										
水洗 1	1	800	800	1000		16	2.5				2.67	2.40		
水洗 2	1	800	800	1000	逆流水洗连续溢流						2.67			
水洗 3	1	800	800	1000						2.67				
酸铜	1	3000	800	1000										
水洗 1	1	800	800	1000		16	2.5				2.67	2.40		
水洗 2	1	800	800	1000	逆流水洗连续溢流						2.67			
水洗 3	1	800	800	1000						2.67				
普通镍	1	3000	800	1000										
水洗 1	1	800	800	1000		16	2.5				2.67	2.40		
水洗 2	1	800	800	1000	逆流水洗连续溢流						2.67			
水洗 3	1	800	800	1000						2.67				
镀三价铬	1	3000	800	1000										
水洗 1	1	800	800	1000	治法少洲法外兴	16	2.5				2.67	2.40		
水洗 2	1	800	800	1000	一 逆流水洗连续溢流					2.67				
水洗 1	1	800	800	1000	进场·冰州·左/共兴·次	16	2.5				2.67	2.40		
水洗 2	1	800	800	1000	一 逆流水洗连续溢流					2.67				
		1	1	1	1			I .	I	1	I			

水洗 1	1	800	800	1000	连续流	16	2.5	2.67	2.40	
混排废水								1.68	1.52	

表 4.2-51 TypeC 滚筒研磨手动线生产废水产排情况

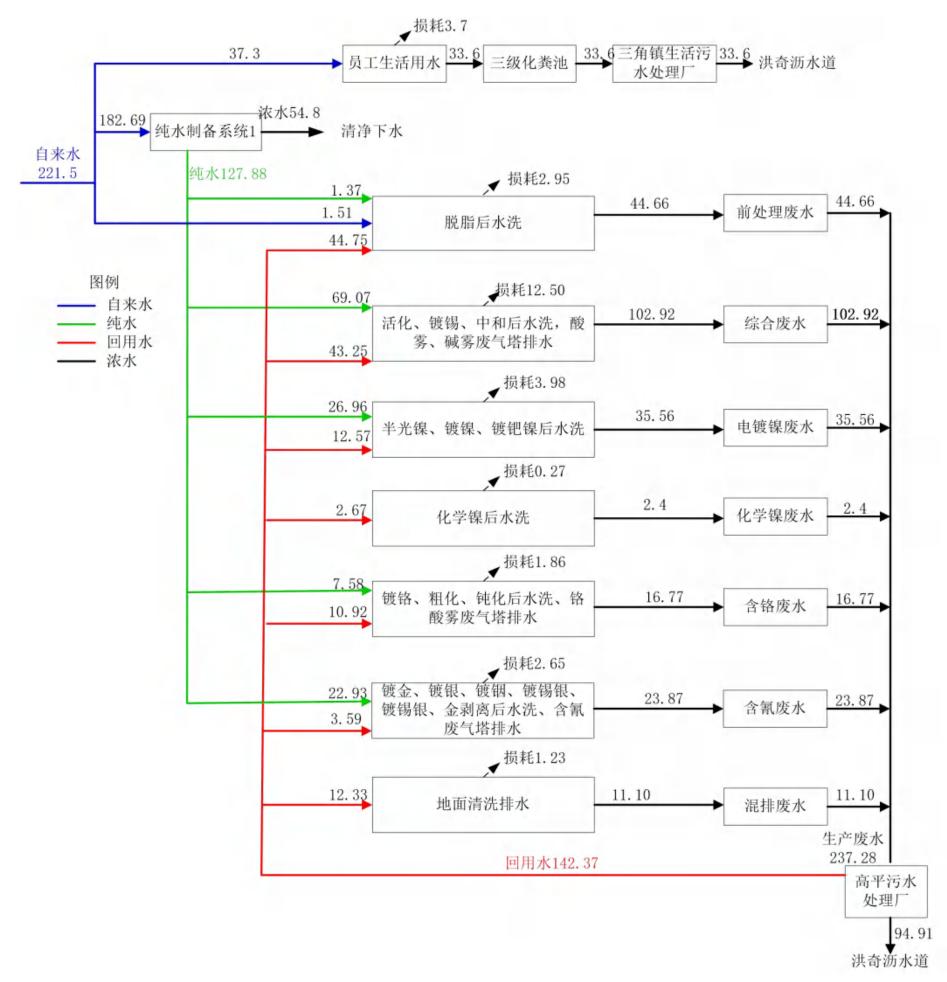
生产线	设备	数量	长(mm)	宽(mm)	高(mm)	总体积(m³)	有效容积(m3)	排放方式	工作时间(h/d)	更换频 率(次/ 天)	自 来 水 水	废水量(t/d)	合计 t/d	
	除油 1	1	600	500	700	0.21	0.17						W1 前处理废水	0.78
TypeC	除油 2	1	600	500	700	0.21	0.17							
滚筒	水洗	1	450	600	400	0.11	0.09	定期更换	16	3.0	0.29	0.26		
研磨	水洗	1	450	600	400	0.11	0.09	定期更换	16	3.0	0.29	0.26		
手动	水洗	1	450	600	400	0.11	0.09	定期更换	16	3.0	0.29	0.26		
线	研磨机	3 台												
	甩乾机	1台												

表 4.2-52 C70 滚筒研磨手动线生产废水产排情况

生产线	设备	数量	长(mm)	宽(mm)	高(mm)	总体积 (m³)	有效容积(m3)	排放方式	工作时间(h/d)	更换频 率(次/ 天)	自来水	纯水	回用水	废水量(t/d)	合计 t/d	
	除油 1	1	500	500	500	0.13	0.10								W1 前处理废水	0.78
	除油 2	1	500	500	500	0.13	0.10									
C70 滚	除油 3	1	500	500	500	0.13	0.10									
筒研	水洗	1	450	600	400	0.11	0.09	定期更换	16	3.0			0.29	0.26		
磨手	水洗	1	450	600	400	0.11	0.09	定期更换	16	3.0			0.29	0.26		
动线	水洗	1	450	600	400	0.11	0.09	定期更换	16	3.0			0.29	0.26		
	研磨机	1	4 台													
	甩乾机	1	1台													

表 4.2-53 散件清洗手动线生产废水产排情况

生产	设备	数量	长(mm)	宽(mm)	高(mm)	 总体积 (m³)	有效容积(m3)	排放方式	工作时间	更换频率(次	自来水	纯	回用	废水量(t/d)	合计 t/d	
线	Ун	双 至	K(IIIII)	ر ۱۱۱۱۱۱))HJ(IIIII)	E PER CITY	17% (m3)	111/10/17 24	(h/d)	/天)		水	水)及八里 (10)		
	除油 1	1	500	500	400	0.10	0.08								W1 前处理废水	1.33
	除油 2	1	500	500	400	0.10	0.08									
散件	除油 3	1	500	500	400	0.10	0.08									
清洗	水洗	1	450	600	400	0.11	0.09	定期更换	16	3.0			0.29	0.26		
手动	水洗	1	450	450	550	0.11	0.09	定期更换	16	3.0			0.29	0.26		
线	水洗	1	450	450	550	0.11	0.09	定期更换	16	3.0			0.29	0.26		
	水洗	1	450	450	550	0.11	0.09	定期更换	16	3.0			0.29	0.26		
	水洗	1	450	450	550	0.11	0.09	定期更换	16	3.0			0.29	0.26		
	甩乾机	2 台														


表 4.2-54 磁力研磨手动线生产废水产排情况

生产线	设备	数 量	(mm)	宽(mm)	高(mm)	总体积 (m³)	有效容积(m3)	排放方式	工作时间 (h/d)	更换频率(次/天)	自来水	纯水	回用水	废水量(t/d)	合计 t/d	
	除油 1	1	600	600	900	0.32	0.26								W1 前处理废水	1.37
	除油 2	1	700	700	750	0.37	0.29									
7兴 十	水洗	1	450	600	500	0.14	0.11	定期更换	16	3.0			0.36	0.32		
磁力研磨	磁力研磨	1	10 台	500	200	0.39	0.31									
手动	水洗	1	450	600	500	0.14	0.11	定期更换	16	3.0			0.36	0.32		
4 线	水洗	1	450	600	500	0.14	0.11	定期更换	16	3.0			0.36	0.32		
又	超聲波水洗	1	600	550	500	0.17	0.13	定期更换	16	3.0			0.36	0.32		
	甩乾机	2台														
	甩乾机	2台				_										

表 4.2-55 25#滚镀铜镍金锡半自动线生产废水产排情况

						1× 4.2 -33 23#1×	C OC NO OK JE	20 1 H 20 2	<u> </u>	7 111112100				
设备	数量	长(mm)	宽(mm)	高(mm)	排放方式	工作时间(h/d)	流速 L/min	自来水 (t/d)	纯水 (t/d)	回用水 (t/d)	重复用 水(t/d)	废水量(t/d)	合计 t/d	
超聲波除油	1	1000	1050	700			L/min	(l/d)	(Va)	(t/d)	八 (1/4)			1.44
超聲波除油	1	1000	500	700		16							W2 综合废水 (其他)	2.88
水洗 1	1	1000	1050	700		16	1.5					1.44	W4 电镀镍废水(普通镍+预镀镍+镀镍)	2.88
水洗 2	1	1000	250	700			1.0				1.60	2111	W5 含氰废水 (镀金之外)	1.44
水洗 3	1	1000	250	700	逆流水洗连续溢流						1.60		W5 含氰废水 (镀金)	1.44
水洗 4	1	1000	250	700						1.60			W7 混排废水	0.61
活化	1	1000	250	700									W2 综合废水(镀锡)	1.44
水洗 1	1	1000	250	700		16	1.5				1.60	1.44		
水洗 2	1	1000	250	700							1.60			
水洗 3	1	1000	250	700	逆流水洗连续溢流						1.60			
水洗 4	1	1000	250	700						1.60				
碱铜	1	1000	1050	700										
水洗 1	1	1000	250	700		16	1.5				1.60	1.44		
水洗 2	1	1000	250	700							1.60			
水洗 3	1	1000	250	700	逆流水洗连续溢流						1.60			
水洗 4	1	1000	250	700						1.60				
活化	1	1000	250	700										
水洗 1	1	1000	250	700		16	1.5				1.60	1.44		
水洗 2	1	1000	250	700	逆流水洗连续溢流						1.60			
水洗 3	1	1000	250	700						1.60				
預鍍鎳	1	1000	500	700										
水洗 1	1	1000	250	700		16	1.5				1.60	1.44		
水洗 2	1	1000	250	700	逆流水洗连续溢流						1.60			
水洗 3	1	1000	250	700						1.60				
普通镍	1	1000	1500	700										

水洗 1	1	1000	250	700		16	1.5		1.60	1.44
水洗 2	1	1000	250	700					1.60	
水洗 3	1	1000	250	700	逆流水洗连续溢流				1.60	
水洗 4	1	1000	250	700					1.60	
鍍金	1	1000	500	700						
回收	1	1000	250	700						
水洗 1	1	1000	250	700		16	1.5		1.60	1.44
水洗 2	1	1000	250	700	逆流水洗连续溢流				1.60	
水洗 3	1	1000	250	700				1.60		
鍍錫	1	1000	1050	700						
水洗 1	1	1000	500	700		16	1.5		1.60	1.44
水洗 2	1	1000	500	700					1.60	
水洗 3	1	1000	500	700	逆流水洗连续溢流				1.60	
水洗 4	1	1000	500	700					1.60	
水洗 5	1	1000	500	700				1.60		
混排废水									0.67	0.61

项目水平衡图(t/d)

表 4.2-56 各生产线生产废水产生情况

秋 4.2-30 石土/ <u> </u>												
11. ÷ 41.	W1 前处理废	W2 综合废	W3 含铬废	W4 电镀镍废	W5 含氰废	W6 含银废	W7 混排废	W8 化学镍	A > 1			
生产线	水	水	水	水	水	水	水	废水	合计			
1#端子连续镀镍金锡自动线	1.92	2.88	0.00	0.96	0.96	0.00	0.35	0.00	7.07			
2#端子连续镀镍金锡自动线	1.92	2.88	0.00	0.96	0.96	0.00	0.35	0.00	7.07			
3#端子连续镀镍金锡自动线	0.96	2.88	0.00	0.96	1.92	0.00	0.35	0.00	7.07			
4#端子连续镀镍金锡自动线	0.96	3.84	0.00	0.96	0.96	0.00	0.35	0.00	7.07			
5#端子连续镀镍金锡自动线	0.96	3.84	0.00	0.96	0.96	0.00	0.35	0.00	7.07			
6#端子连续镀铜镍金锡自动 线	0.96	4.08	0.00	1.20	0.96	0.00	0.38	0.00	7.58			
7#端子连续镀镍金锡自动线	0.96	3.84	0.00	0.96	0.96	0.00	0.35	0.00	7.07			
8#端子连续镀镍钯金锡自动 线	0.96	3.84	0.00	0.96	0.96	0.00	0.35	0.00	7.07			
9#端子连续镀镍钯金锡自动 线	0.96	3.84	0.00	0.96	0.96	0.00	0.35	0.00	7.07			
10#端子连续镀镍钯金锡自	0.96	3.84	0.00	0.96	0.96	0.00	0.35	0.00	7.07			
动线 11#端子连续镀镍钯金锡自	0.96	3.84	0.00	0.96	0.96	0.00	0.35	0.00	7.07			
动线 12#端子连续镀镍钯金锡自	0.96	3.84	0.00	0.96	0.96	0.00	0.35	0.00	7.07			
动线 13#端子连续镀镍钯金锡自	0.96	3.84	0.00	0.96	0.96	0.00	0.35	0.00	7.07			
	0.96	3.84	0.00	0.96	0.96	0.00	0.35	0.00	7.07			
加线 15#端子连续镀镍钯金锡自 动线	0.96	3.84	0.00	0.96	0.96	0.00	0.35	0.00	7.07			
16#端子连续镀镍钯金锡自动线	0.96	3.84	0.00	0.96	0.96	0.00	0.35	0.00	7.07			
17#端子连续镀镍锡自动线	0.96	4.80	0.00	1.92	0.00	0.00	0.40	0.00	8.08			
18#端子连续镀镍锡自动线	0.96	4.80	0.00	1.92	0.00	0.00	0.40	0.00	8.08			
19#端子连续镀铜镍锡金自 动线	1.92	2.88	0.00	1.92	0.96	0.00	0.40	0.00	8.08			
20#挂镀镍铬半自动线	7.68	3.84	5.76	3.84	0.00	0.00	1.11	0.00	22.23			
21#端子连续镀银自动线	0.96	6.72	0.00	0.96	0.96	0.96	0.56	0.00	11.12			
22#端子连续镀镍钯金铑钌 自动线	0.96	3.84	0.00	0.96	0.96	0.00	0.30	0.00	7.02			
连续电泳半自动线	3.78	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.78			
水转印线	1.61	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.61			
23#电铸镍半自动线	0.45	0.53	1.29	0.76	0.00	0.00	0.11	0.00	3.13			
24#塑胶挂镀铜镍铬自动线	2.40	9.60	9.60	4.80	0.00	0.00	1.52	2.40	30.32			
TypeC 滚筒研磨手动线	0.78	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.78			
C70 滚筒研磨手动线	0.78	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.78			
散件清洗手动线	1.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.33			
磁力研磨手动线	1.37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.37			
25#滚镀铜镍金锡半自动线	1.44	4.32	0.00	2.88	2.88	0.00	0.61	0.00	12.13			
废气处理		2.79	0.13		0.83				3.75			
合计	44.66	102.92	16.77	35.56	22.91	0.96	11.10	2.40	237.28			

表 4.2-57 废气喷淋塔用排水情况

				次 4.2-3/ 及 (·	培用州小月儿			
序号	喷淋塔	数量	水箱规格 (总体积 m³)	循环水量(m³/min)	換水频率(次/天)	补充水量(m³/d)	折合换水量(t/d)	废水类别
1	酸性废气喷淋塔	1	8	1.50	15 天 1 换	17.28	0.50	混排废水
2	碱性废气喷淋塔	1	8	1.50	15 天 1 换	17.28	0.50	混排废水
3	含氰废气喷淋塔	1	6	1.25	15 天 1 换	14.40	0.42	含氰废水
4	含铬废气喷淋塔	1	2	0.38	15 天 1 换	4.32	0.13	含铬废水
5	酸性废气喷淋塔	1	5	1.00	15 天 1 换	11.52	0.33	混排废水
6	碱性废气喷淋塔	1	6	1.25	15 天 1 换	14.40	0.42	混排废水
7	含氰废气喷淋塔	1	6	1.25	15 天 1 换	14.40	0.42	含氰废水
8	酸性废气喷淋塔	1	6	1.25	15 天 1 换	14.40	0.42	混排废水

9	碱性废气喷淋塔	1	8	1.50	15 天 1 换	17.28	0.50	混排废水
10	碱性废气喷淋塔	1	2	0.38	15 天 1 换	4.32	0.13	混排废水
		3.75						

技改扩建后项目生产废水总产生量为 237.28t/d。项目生产废水分为前处理废水、综合废水、含铬废水、电镀镍废水、含氰废水、含银废水、混排废水、化学镍废水等八股,各股废水经专制管道送至高平污水处理有限公司进行处理,经处理后的废水 60%回用于厂区,40%外排进入洪奇沥水道。

参照《电镀废水治理工程技术规范》(HJ2002-2010)中电镀废水的浓度,项目各类生产废水污染物的产生情况见下表。

表 4.2-58 生产废水水质情况

生产废水各污染因子 产排情况		W1 前处理	W2 综合	W3 含铬	W4 电镀镍	W5 含氰	W6 含银	W7 混排	W8 化学镍	产生量	产生量	排放
产排情	_	废水	废水	废水	废水	废水	废水	废水	废水	(kg/d)	(t/a)	浓度
水量 t/d	污水 量	44.7	102.9	16.8	35.6	23.9		11.1	2.4	237.28	71183.0	71183
pН	pН	10~12	4~6	2~6	4~6	2~5		4~6	4~6			6~9
	浓度 mg/l	500.0	200.0	100.0	100.0	100.0		200.0	100.0			80.0
$CODc_r$	总量 kg/d	22.3	20.6	1.7	3.6	2.4		2.2	0.2	53.0	15.9	
	浓度 mg/l	0.0	0.0	0.0	0.0	200.0		25.0	0.0			0.2
CN ⁻	总量 kg/d	0.0	0.0	0.0	0.0	4.8		0.3	0.0	5.1	1.52	
当 <i>扫</i>	浓度 mg/l	0.0	15.0	0.0	0.0	5.0		3.0	0.0			0.5
总铜	总量 kg/d	0.0	1.5	0.0	0.0	0.1		0.0	0.0	1.7	0.51	
	浓度 mg/l	0.0	0.0	0.0	200.0	0.0		20.0	100.0			0.5
总镍	总量 kg/d	0.0	0.0	0.0	7.1	0.0		0.2	0.2	7.6	2.27	
Ψ Λ	浓度 mg/l	0.0	0.0	0.0	0.0	0.3		0.0	0.0			0.0
总金	总量 kg/d	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0060	0.00	
<i>ц. t</i> п	浓度 mg/l	0.0	0.0	0.0	0.0	0.5		0.1	0.0			0.0
总银	总量 kg/d	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0130	0.00	
Cr ⁶⁺	浓度 mg/l	0.0	0.0	35.0	0.0	0.0		2.0	0.0			0.1
	总量 kg/d	0.0	0.0	0.6	0.0	0.0		0.0	0.0	0.6	0.18	
当 	浓度 mg/l	0.0	0.0	65.0	0.0	0.0		5.0	0.0			0.5
总铬	总量 kg/d	0.0	0.0	1.1	0.0	0.0		0.1	0.0	1.1	0.34	
—————————————————————————————————————	浓度 mg/l	15.0	20.0	0.0	0.0	0.0		10.0	0.0			1.0
总磷	总量 kg/d	0.7	2.1	0.0	0.0	0.0		0.1	0.0	2.8	0.85	

表 4.2-59 各生产线基准排水量

		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •					
生产线	产品名称	面积 (万 m²/a)	废水量(t/d)	清洗次数	总用水量(t/d)	类型	基准排水 量(L/m²)	标准值	达标情 况
1#端子连续镀镍金锡自动线	铜端子	4.42	7.07	7	7.86	多层镀	47.97	250	达标
2#端子连续镀镍金锡自动线	铜端子	4.42	7.07	7	7.86	多层镀	47.97	250	达标
3#端子连续镀镍金锡自动线	铜端子	4.42	7.07	7	7.86	多层镀	47.97	250	达标
4#端子连续镀镍金锡自动线	铜端子	4.42	7.07	7	7.86	多层镀	47.97	250	达标
5#端子连续镀镍金锡自动线	铜端子	4.42	7.07	7	7.86	多层镀	47.97	250	达标

6#端子连续镀铜镍金锡自动线	不锈钢、铜端子	4.42	7.58	9	8.42	多层镀	51.40	250	达标
7#端子连续镀镍金锡自动线	铜端子	4.42	7.07	7	7.86	多层镀	47.97	250	达标
8#端子连续镀镍钯金锡自动线	铜端子	4.42	7.07	7	7.86	多层镀	47.97	250	达标
9#端子连续镀镍钯金锡自动线	铜端子	4.42	7.07	7	7.86	多层镀	47.97	250	达标
10#端子连续镀镍钯金锡自动线	铜端子	4.42	7.07	7	7.87	多层镀	47.97	250	
11#端子连续镀镍钯金锡自动线	铜端子	4.42	7.07	7	7.86	多层镀	47.97	250	达标
12#端子连续镀镍钯金锡自动线	铜端子	4.42	7.07	7	7.86	多层镀	47.97	250	达标
13#端子连续镀镍钯金锡自动线	铜端子	4.42	7.07	7	7.86	多层镀	47.97	250	 达标
14#端子连续镀镍钯金锡自动线	铜端子	4.42	7.07	7	7.86	多层镀	47.97	250	达标
15#端子连续镀镍钯金锡自动线	铜端子	4.42	7.07	7	7.87	多层镀	47.97	250	达标
16#端子连续镀镍钯金锡自动线	铜端子	4.42	7.07	7	7.86	多层镀	47.97	250	达标
17#端子连续镀镍锡自动线	铁端子	6.84	8.08	8	8.98	多层镀	35.44	250	达标
18#端子连续镀镍锡自动线	铁端子	6.84	8.08	8	8.98	多层镀	35.44	250	达标
19#端子连续镀铜镍锡金自动线	铁端子	6.84	8.08	8	8.98	多层镀	35.44	250	达标
20#挂镀镍铬半自动线	铁片	9.00	22.23	11	24.70	多层镀	74.11	250	达标
21#端子连续镀银自动线	铜端子	4.32	11.12	11	12.35	多层镀	77.19	250	达标
22#端子连续镀镍钯金铑钌自动线	铜端子	4.32	7.02	7	8.87	多层镀	48.77	250	达标
连续电泳半自动线	铜端子	4.32	3.78	5	4.20	/	/	/	/
水转印线	五金件	9.12	1.61	3	0.90	/	/	/	/
23#电铸镍半自动线	电子产品	0.50	3.13	34	3.48	多层镀	188.05	250	达标
24#塑胶挂镀铜镍铬自动线	ABS 塑胶件	10.00	30.32	12	33.68	多层镀	90.95	250	达标
TypeC 滚筒研磨手动线	五金件	4.00	0.78	3	0.86	/	/	/	/
C70 滚筒研磨手动线	五金件	4.00	0.78	3	0.86	/	/	/	/
散件清洗手动线	五金件	5.00	1.33	5	1.48	/	/	/	/
磁力研磨手动线	五金件	5.00	1.37	3	1.52	/	/	/	/
25#滚镀铜镍金锡半自动线	五金件	5.00	12.13	8	13.47	多层镀	72.76	250	达标
废气处理	/	/	3.75	/	/	/	/	/	/

由上表,项目各生产线的排水量均达到广东省《电镀水污染物排放标准》(DB44/1597-2015)表 1 中珠三角排放限值要求"多层镀单位产品基准排水量 250L/m²"限值。

4.2.2.3 噪声产生及治理

本项目噪声源主要是生产设备、各类风机、各类泵等,噪声源强及治理措施如下表 所示。

序号	机械名称	噪声等级 dB(A)	排放特征	防治措施
1	电镀槽电机	65-70		
2	风机	75-80		合理布局,安装消声减 振降噪设施,墙体隔音,
3	泵	70-80	连续	加强厂界绿化,加强员
4	抽风机	70-80		工防护,文明生产等
5	空压机	75-80		10, 10, 10, 10, 10, 10, 10, 10, 10, 10,

表 4.2-60 生产设备噪声值(离声源 1m 处)

项目采取的噪声治理措施有:

- (1) 从噪声源入手,在满足工艺要求的前提下,选择低噪声的设备,主要生产设备均布置在室内,对噪声较大的设备基础进行减振防噪处理;
- (2) 在设备、管道设计中,注意防震、防冲击,以减轻振动噪声,并注意改善气体输流时流畅状况,以减轻空气动力噪声;
 - (3) 对风机、泵等除设置减振基础外,再设置隔音罩进一步降低噪声;
 - (4) 加强噪声设备的维护管理, 避免因不正常运行所导致的噪声增大。

4.2.2.4 固体废物产生及治理

项目产生的固体废物包括不合格产品、一般原材料废包装、危险化学品废包装、废滤芯、废槽渣、废液、废 RO 反渗透膜、废离子交换树脂和生活垃圾等。

1、不合格产品及边角料

项目总产生的不合格产品约 10t/a, 经分类收集后交由专业公司回收处理。

2、一般原材料废包装

项目生产过程将产生一定量的一般原材料废包装,交废旧物资回收公司处理。

3、危险化学品废包装

危险化学品的废包装包括含镍化学品废包装桶(袋)、含氰化学品废包装桶(瓶)、酸碱化学品废包装桶(袋)、封孔剂废包装桶、等,根据《国家危险废物名录》(2016),235

含镍、含氰、酸碱等危险化学品废包装物属于危险废物,危险类别为 HW49 (其他废物),危险代码为 900-401-49;封孔剂废包装桶危险类别为 HW49 (其他废物),危险代码为 900-401-49,分类收集放置在危废仓暂存,定期交由具有危险废物经营许可证的单位处理。

4、废滤芯

电镀槽液经长期使用后积累了许多杂质金属离子,为了控制槽液中的杂质在工艺的许可范围之内,电镀槽液经过过滤系统过滤后,重新使用,定期更换滤芯,废滤芯产生量为 0.611t/a。

废滤芯属于《国家危险废物名录》(2016)中的类别"HW49 其他废物,非特定行业,900-041-49,含有或沾染毒性、感染性危险废物的废弃包装物、容器、过滤吸附介质",经收集后放置危险废物储存间暂存,定期交由相关具有危险废物经营许可证的单位处理。

5、废槽渣

各镀槽需定期清理槽渣过程产生槽渣,槽渣量共约 0.9538t/a。槽渣属于《国家危险废物名录》(2016)中的类别"HW17 表面处理废物,金属表面处理及热处理加工,336-063-17,其他电镀工艺产生的废液、槽渣和废水处理污泥",经收集并用胶桶密封包装好后放置危险废物储存间暂存,定期交由具有相关危险废物经营许可证的单位处理。

6、废液

生产线镀槽定期过滤和补充镀液。废液主要是超声波脱脂、电解脱脂、酸活化、酸洗、中和、化学研磨等环节产生,产生量约 72.13t/a。废液属于《国家危险废物名录》(2016)中的类别"HW17表面处理废物,金属表面处理及热处理加工,336-063-17,其他电镀工艺产生的废液、槽渣和废水处理污泥",定期交由具有危险废物经营许可证的单位处理。

7、废 RO 反渗透膜

项目设有 2 套纯水制备系统,采用 RO 反渗透膜进行纯水制备。反渗透膜每年更换 2 次,更换量约为 0.2 吨/次,则每年产生 RO 反渗透膜 0.4t/a,由设备的保养公司进行更换并回收处理。

8、废离子交换树脂

项目金银在线回收系统使用离子交换树脂处理废水(含金银废水需经过离子交换树脂在线回收后才排入废水收集池)更换的废离子交换树脂为0.1396t/a,统一收集采用胶桶密封包装好后放置危险废物储存间暂存,定期交由具有危险废物经营许可证的单位处理。

9、生活垃圾

项目有员工 50 人,按平均每人每天产生 0.5kg 生活垃圾计,则生活垃圾产生量为 0.025t/d, 合计 7.8t/a。收集后交环卫部门处理。

4.3技改扩建前后对比

4.3.1 原辅材料

技改扩建前后项目原材料变化情况如下:

表 4.3-1 搬迁技改扩建前后原材料情况对比 单位 t/a

原辅材料名称 单位 技 除蜡水 t 除油粉 t	改扩建前 4.48 40	技改扩建 后	技改扩建后全厂-原环 评审批 -4.48
		0	-4 48
除油粉 t	40		-T.TU
		0	-40
铬酸酐 t	6.62	2.26	-4
硫酸 t	46.8	0	-46.8
亲水剂 t	0.3	0	-0.3
盐酸 t	36.1	64.64	+28.54
柠檬酸钠 t	1.35	2.54	+1.19
次磷酸钠 t	6.85	2.54	-4.31
硫酸镍 t	20.1	30.98	+10.88
氯化镍 t	0.7	22.64	+21.94
焦磷酸钾 t	11	0	-11
焦磷酸铜 t	2.5	0	-2.5
硫酸铜 t	17.2	27.2	+10
硼酸 t	2.5	9.6	+7.1
硝酸 t	1	0	-1
镍板 t	12.9	0	-12.9
氢氧化钾 t	0.1	0	-0.1
氰化金钾 t	0.04	1.43	+1.39
氰化钾 t	0.2	1.29	+1.09
氰化钠 t	0.09	2.29	+2.2
氰化亚铜 t	2.1	0.31	-1.79
佬液 t	0.2	0	-0.2
防变色剂 t	0.4	0.3	-0.1
仿金板 t	0.1	0	-0.1
氧化锌 t	0.6	0	-0.6
锌锭 t	0.5	0	-0.5
油漆 t	5	0	-5
成型生物质 t	135	0	-135
银板 t	0.04	2.48	+2.44
铜板 t	12	0	-12

钯盐/钯水	t	0.6	2.76	+2.16
稳定剂	t	0.2	0	-0.2
氨水	t	5	17.6	+12.6
碱性除油剂	t	0	133.58	+133.58
酸盐	t	0	24.94	+24.94
氨基磺酸镍	t	0	54.96	+54.96
镍角	t	0	86.47	+86.47
甲基磺酸锡	t	0	18.13	+18.13
锡球	t	0	39.76	+39.76
磷铜球	t	0	18.78	+18.78
硫酸四氨钯	t	0	2.72	+2.72
铜粒	t	0	1.74	+1.74
氰化银	t	0	1.81	+1.81
脱银剂	t	0	5	+5
银保护剂	t	0	5	+5
钌铑药水	t	0	0.1	+0.1
电泳漆	t	0	1.46	+1.46
转印膜	t	0	9000	+9000
活化剂	t	0	0.48	+0.48
水性漆	t	0	23.21	+23.21
高锰酸钾	t	0	4	+4
石子	t	0	6	+6
研磨剂	t	0	18	+18
解胶水	t	0	6.8	+6.8
酸性除油剂	t	0	47.5	+47.5
锡保护剂	t	0	15	+15
硫酸铬钾	t	0	2.6	+2.6
焦亚硫酸钠	t	0	6.8	+6.8
氯化钯	t	0	2.26	+2.26
氯化亚锡	t	0	0.52	+0.52
电解退镀粉	t	0	15	+15
三氯化铬	t	0	0	0

4.3.2 产品方案

技改扩建前后,项目产品方案变化情况如下:

表 4.3-2 项目技改扩建前后生产规模情况 (单位:吨/年)

项目	技改扩建前	技改扩建后	增减量
ABS 塑料件	7000 万件	257 万件	-6743 万件
五金 (大件)	240 万件	228 万件	-12 万件

项目	技改扩建前	技改扩建后	增减量
五金 (小件)	300 万件	300 万件	0
仿首饰件	6000 万件	0	-6000 万件
端子	0	108022 万个	108022 万个
铁端子	0	745 万个	745 万个
电镀面积	36.1 万 m²/a	119.45 万 m²/a	+83.35 万 m ² /a

4.3.3 主要设备

技改扩建前后项目生产设备变化情况如下:

表 4.3-3 技改扩建前后项目生产线变化情况一览表

	不 4.3-3 仅以1							
序号	设备名称	技改扩建 前数量	技改扩建后数量	技改扩建前后增 减量				
1	ABS 塑胶自动线	2条	0	-2 条				
2	垂直式五金镀锌自动线	1条	0	-1 条				
3	五金镀镍(铬)仿金电镀线	1条	0	-1 条				
4	镀银(金)电镀手动线	1条	0	-1 条				
5	烘/烤箱(以电能作唯一能源)	7台	0	-7 台				
6	水帘柜(1.5m×1.2m×0.5m,含喷枪 2 把)	1 个	0	-1 个				
7	喷砂机	1台	0	-1 台				
8	抛光机	4台	0	-4 台				
9	压缩空气机	3 台	0	-3 台				
10	燃生物质成型燃料热水炉	3 台	0	-3 台				
11	1#端子连续镀镍金锡自动线	0	1条	+1 条				
12	2#端子连续镀镍金锡自动线	0	1 条	+1 条				
13	3#端子连续镀镍金锡自动线	0	1条	+1 条				
14	4#端子连续镀镍金锡自动线	0	1条	+1 条				
15	5#端子连续镀镍金锡自动线	0	1条	+1 条				
16	6#端子连续镀铜镍金锡自动线	0	1条	+1 条				
17	7#端子连续镀镍金锡自动线	0	1条	+1 条				
18	8#端子连续镀镍钯金锡自动线	0	1条	+1 条				
19	9#端子连续镀镍钯金锡自动线	0	1条	+1 条				
20	10#端子连续镀镍钯金锡自动线	0	1条	+1 条				
21	11#端子连续镀镍钯金锡自动线	0	1条	+1 条				
22	12#端子连续镀镍钯金锡自动线	0	1条	+1 条				
23	13#端子连续镀镍钯金锡自动线	0	1 条	+1 条				
24	14#端子连续镀镍钯金锡自动线	0	1 条	+1 条				
25	15#端子连续镀镍钯金锡自动线	0	1条	+1 条				
26	16#端子连续镀镍钯金锡自动线	0	1条	+1 条				
27	17#端子连续镀镍锡自动线	0	1条	+1 条				

序号	设备名称	技改扩建 前数量	 技改扩建后数量 	技改扩建前后增 减量
28	18#端子连续镀镍锡自动线	0	1条	+1 条
29	19#端子连续镀铜镍锡金自动线	0	1 条	+1 条
30	20#挂镀镍铬半自动线	0	1条	+1 条
31	21#端子连续镀银自动线	0	1条	+1 条
32	22#端子连续镀镍钯金铑钌自动线	0	1条	+1 条
33	连续电泳半自动线	0	1条	+1 条
34	水转印线	0	1条	+1 条
35	23#电铸镍半自动线	0	1条	+1 条
36	24#塑胶挂镀铜镍铬自动线	0	1条	+1 条
37	TypeC 滚筒研磨手动线	0	1条	+1 条
38	C70 滚筒研磨手动线	0	1条	+1 条
39	散件清洗手动线	0	1条	+1 条
40	磁力研磨手动线	0	1条	+1 条
41	25#滚镀铜镍金锡半自动线	0	1条	+1 条
42	燃天然气热水炉(150 万大卡)	0	1 台	+1 台

4.3.4 主要污染物"三本账"

技改扩建前后,项目主要污染物排放情况如下:

表 4.3-4 技改扩建前后主要污染物排放量统计表 ("三本帐")

类别	污染物		技改扩建 前许可排 放量(t/a)	"以新带 老"削减 量(t/a)	技改扩建后 排放量(t/a)	技改扩建前后 增减量(t/a)	
应业	生活污水	废水量	11070	0	10080	-990	
废水	生产废水	废水量	273.5t/d	0	273.28t/d	-0.22t/d	
		氯化氢	0.093	0	0.197	+0.104	
		硫酸雾	0.032	0	0.171	+0.139	
		氨气	0.000	0	0.077	+0.077	
		氰化氢	0.033	0	0.278	+0.244	
		非甲烷总烃	0.285	0	0.276	-0.009	
lz lz	k <i>/=</i>	(TVOC)	0.283	0	0.276	-0.009	
12		颗粒物	0.127	0	0.000	-0.127	
		铬酸雾	0.007	0	0.001	-0.006	
		二氧化硫	0.037	0	0.086	0.049	
		氮氧化物	0.139	0	0.130	-0.009	
		二甲苯	0.095	0	0.000	-0.095	
		甲苯	0.019	0	0.000	-0.019	
FI /-	k 広Mm	不合格产品	0	0	0	0	
	本废物	一般原材料废包装	0	0	0	0	

纯水制备RO反渗透 膜	0	0	0	0
生活垃圾	0	0	0	0
含镍化学品废包装	0	0	0	0
酸碱化学品废包装	0	0	0	0
废封孔剂桶	0	0	0	0
槽渣	0	0	0	0
废滤芯	0	0	0	0
废液	0	0	0	0
废离子交换树脂	0	0	0	0

注: 生产废水量为项目排入三角镇高平污水处理有限公司的量。

4.4清洁生产分析

4.4.1 清洁生产定义

为了充分体现国家经济发展规划的产业政策,建设单位应坚持"清洁生产"、"总量控制"的原则。

所谓清洁生产,是指在生产过程和产品全生命周期中持续地运用整体预防污染的战略,达到减少对人类和生态环境的危害,也就是以清洁的原料、清洁的生产过程为基础,生产清洁的产品,采取有效的污染物治理措施,并从优化工艺、改进设备、加强管理等方面入手,通过降低生产过程中的能耗、物耗,达到提高产品质量、降低成本、降低排污的目的。

4.4.2 清洁生产的要求

清洁生产是关于产品生产过程中一种新的、创造性的思维方式,它将整体预防的环境战略应用于原料、生产过程、产品和服务中,以增加生产效率并减少对人类和环境的风险。具体要求如下:

- (1) 原料:清洁生产意味着使用无毒、在环境中不持久,不生物积累、可重复利用的原材料;
 - (2) 生产过程: 清洁生产意味节约原材料和能源,减少所有废弃物的数量和毒性;
- (3)产品:清洁生产意味着减少和降低产品从原料使用到最终处置整个生命周期的不利影响;

(4) 服务:要求将环境因素控制纳入设计和所提供的服务中。

总之,清洁生产是保护环境、保持可持续发展的关键,它要求企业通过源削减实现 在生产过程中控制和减少污染物的排放,是主动、有效的行为和对策,可达到节能、降 耗、削污、增效等目的。

4.4.3 清洁生产的途径

清洁生产的途径可以归纳为:设备和技术改造、工艺流程改进、改进产品设计、改进产品包装、原材料替代及促进生产各环节的内部管理,促进组织内部物料的循环、减少污染物的排放、改进管理和操作,并在组织、技术、宏观政策和资金上做具体的安排。

4.4.4 项目清洁生产分析

1、评价内容

清洁生产是一个相对的概念,因此清洁生产评价的指标及其结果也是相对的。根据粤环(2007)8号文的要求及《关于实施差别化环保准入促进区域协调发展的指导意见》(粤环(2014)27号)的相关要求,本项目应达到《电镀行业清洁生产评价指标体系》(2015年第25号,2015年10月28日)规定的国际清洁生产领先水平要求。《电镀行业清洁生产评价指标》(中华人民共和国国家发展和改革委员会中华人民共和国环境保护部中华人民共和国工业和信息化部公告2015年第25号)规定,综合电镀清洁生产水平分为"I级(国际清洁生产领先水平)"、"II级(国内清洁生产先进水平)"、"II级(国内清洁生产基本水平)"三个等级。本环评将按照《电镀行业清洁生产评价指标体系》(2015年第25号,2015年10月28日),对清洁生产状况与上述三个等级清洁生产状况进行比较,得出本项目的清洁生产水平。

2、评价指标

根据国家发展和改革委员会、环境保护部及工业和信息化部发布的《电镀行业清洁生产评价指标体系》(2015 年第 25 号,2015 年 10 月 28 日),电镀行业清洁生产指标体系可分为定量评价指标和定性评价指标两个体系。定量指标选取了有代表性的、能反映"节能"、"降耗"、"减污"和"增效"等有关清洁生产最终目标的指标,综合考评企业实施清洁生产的状况和企业清洁生产程度。定性指标根据国家有关推行清洁生产的产业发展和技术进步政策、资源环境保护政策规定以及行业发展规划等选取,用于考核企业对243

有关政策法规的符合性及其清洁生产工作实施情况。

(1) 指标基准值

根据《电镀行业清洁生产评价指标体系》(2015 年第 25 号,2015 年 10 月 28 日),各指标的评价基准值是衡量该项指标是否符合清洁生产基本要求的评价基准。在定量评价指标中,各指标的评价基准值是衡量该项指标是否符合清洁生产基本要求的评价基准。本评价指标体系确定各定量评价指标的评价基准值的依据,是我国电镀行业发展实际情况,多年来已经实施清洁生产审核企业的审核报告。在定性评价指标体系中,衡量该项指标是否贯彻执行国家有关政策、法规的情况,是否采用电镀行业污染防治措施,按"是"或"否"两种选择来评定。

(2) 评价方法

1) 指标无量纲化

不同清洁生产指标由于量纲不同,不能直接比较,需要建立原始指标的函数。

$$Y_{\varepsilon_{i}}(x_{ij}) = \begin{cases} 100, x_{ij} \in g_{i} \\ 0, x_{ij} \notin g_{i} \end{cases}$$

式中, x_{ij} 表示第 i 个一级指标下的第 j 个二级指标; g_k 表示二级指标基准值,其中 g_1 为 I 级水平, g_2 为 II 级水平, g_3 为 III级水平; Y_{gk} (x_{ij}) 为二级指标 x_{ij} 对于级别 g_k 的函数。如上式所示,若指标 x_{ij} 属于级别 g_k ,则函数的值为 100,否则为 0。

2) 综合评价指数计算

通过加权平均、逐层收敛可得到评价对象在不同级别 gk 的得分 Ygk ,如下式所示。

$$\mathbf{Y}_{\varepsilon_{k}} = \sum_{i=1}^{m} \left(w_{i} \sum_{j=1}^{n_{i}} \omega_{ij} Y_{\varepsilon_{k}} \left(x_{ij} \right) \right)$$

式中, w_i 为第 i 个一级指标的权重, ω_{ij} 为第 I 个一级指标下的第 j 个二级指标的权

$$= 1$$
 $= 1$ $=$

3) 电镀行业清洁生产企业等级评定

《电镀行业清洁生产评价指标体系》(2015年第25号,2015年10月28日)指标

体系采用限定性指标评价和指标分级加权评价相结合的方法。在限定性指标达到III级水平的基础上,采用指标分级加权评价方法,计算行业清洁生产综合评价指数。根据综合评价指数,确定清洁生产水平等级。

对电镀企业清洁生产水平的评价,是以其清洁生产综合评价指数为依据的,对达到一定综合评价指数的企业,分别评定为清洁生产领先企业、清洁生产先进企业或清洁生产一般企业。

根据目前我国电镀行业的实际情况,不同等级的清洁生产企业的综合评价指数如下。

 企业清洁生产水平
 评定条件

 I级(国际清洁生产领先水平)
 同时满足: Y₁≥85; 限定性指标全部满足 I 级基准值要求

 II级(国内清洁生产先进水平)
 同时满足: Y₁≥85; 限定性指标全部满足 II 级基准值要求及以上

 III级(国内清洁生产基本水平)
 满足: Y₁□=100

表 4.4-1 电镀行业不同等级清洁生产企业综合评价指数

4.4.5 项目清洁生产评价分析

- (1) 限定性指标计算
- ①单位产品每次清洗取水量

单位产品每次清洗取水量是指单位面积(包括进入镀液而无镀层的面积)镀件在电镀生产全过程中每次清洗所耗用水量,多级逆流清洗按级数计算清洗次数。单位产品每次清洗取水量如下:

农 1.1 2 中区) 吅 等风钥机农小量							
生产线	面积(万	废水量	清洗次	总用水量	清洁生产水平(以用水		
生厂线 	m ² /a)	(t/d)	数	(t/d)	量计算)L/(m·次)		
1#端子连续镀镍金锡自动线	4.42	7.07	7	7.86	7.61		
2#端子连续镀镍金锡自动线	4.42	7.07	7	7.86	7.61		
3#端子连续镀镍金锡自动线	4.42	7.07	7	7.86	7.61		
4#端子连续镀镍金锡自动线	4.42	7.07	7	7.86	7.61		
5#端子连续镀镍金锡自动线	4.42	7.07	7	7.86	7.61		
6#端子连续镀铜镍金锡自动 线	4.42	7.58	9	8.42	6.35		
7#端子连续镀镍金锡自动线	4.42	7.07	7	7.86	7.61		
8#端子连续镀镍钯金锡自动 线	4.42	7.07	7	7.86	7.61		
9#端子连续镀镍钯金锡自动 线	4.42	7.07	7	7.86	7.61		

表 4.4-2 单位产品每次清洗取水量

10#端子连续镀镍钯金锡自 动线	4.42	7.07	7	7.87	7.63
11#端子连续镀镍钯金锡自 动线	4.42	7.07	7	7.86	7.61
12#端子连续镀镍钯金锡自 动线	4.42	7.07	7	7.86	7.61
13#端子连续镀镍钯金锡自 动线	4.42	7.07	7	7.86	7.61
14#端子连续镀镍钯金锡自 动线	4.42	7.07	7	7.86	7.61
15#端子连续镀镍钯金锡自 动线	4.42	7.07	7	7.87	7.63
16#端子连续镀镍钯金锡自 动线	4.42	7.07	7	7.86	7.61
17#端子连续镀镍锡自动线	6.84	8.08	8	8.98	4.92
18#端子连续镀镍锡自动线	6.84	8.08	8	8.98	4.92
19#端子连续镀铜镍锡金自 动线	6.84	8.08	8	8.98	4.92
20#挂镀镍铬半自动线	9.00	22.23	11	24.70	7.49
21#端子连续镀银自动线	4.32	11.12	11	12.35	7.80
22#端子连续镀镍钯金铑钌 自动线	4.32	7.02	7	8.87	8.80
23#电铸镍半自动线	0.50	3.13	34	3.48	6.15
24#塑胶挂镀铜镍铬自动线	10.00	30.32	12	33.68	8.42
25#滚镀铜镍金锡半自动线	5.00	12.13	8	13.47	10.11

注: 用水量包括: 自来水量、回用水量及重复用水量的总和。

根据计算本项目单位电镀产品平均每次清洗取水量为 7.36L/m²,满足 I 级基准值。

②废水处理率

本项目电镀生产废水分类收集后经专用管道送至高平污水处理有限公司处理,处理效率 100%,本项目电镀废水处理率满足 I 级基准值。

③减少重金属污染物污染预防措施

项目电镀线减少重金属污染物污染预防措施包括: a、镀件缓慢出槽以延长镀液滴流时间; b、科学装挂镀件; c、增加镀液回收槽; d、镀槽间装导流板。

项目有减少重金属污染物污染预防措施,满足 I 级基准值。

④危险废物污染预防措施

项目产生的危废废物交由有处置相关危险废物资质的单位处理,满足 I 级基准值。

⑤环境法律法规执行情况

废水、废气、噪声等污染物排放符合国家和地方排放标准;主要污染物排放达到国家和地方污染物排放总量控制指标,满足 I 级基准值。

⑥产业政策执行情况

生产规模和工艺符合国家和地方相关产业政策,满足 I 级基准值。

⑦危险化学品管理

符合《危险化学品安全管理条例》相关要求,满足 I 级基准值。

⑧危险废物处理处置

危险废物按照 GB18597 等相关规定执行,满足 I 级基准值。

9环境应急预案

编制系统的环境应急预案并开展环境应急演练,满足Ⅰ级基准值。

综上,项目限定性指标均满足 I 级基准值。

(2) 其他指标

表 4.4-3 综合类电镀企业定量化评价指标项目

一级指标	一级 指标 权重	二级指标	单位	二级指标权重	I 级基准值	Ⅱ级基准值	III级基准值	本项目指标值	本项目与 I 级基准 值对比得 分
		采用清洁生产工	艺 1	0.15	1.民用产品采用低铬 ⁹ 或三价铬钝化 2.民用产品采用无氰镀锌 3.使用金属回收工艺 4.电子元件采用无铅镀层替代铅锡合金 1.民用产品采用低铬 ⁹ 或三价铬钝化 2.民用产品采用无氰镀锌 3.使用金属回收工艺		本项目无镀铬;无镀锌;部分金属回收,金属回收使用 镀液回收槽工艺;电子元件无铅镀层。(I级)	100	
生产 工艺 及	0.33	清洁生产过程控	制	0.15	1.镀镍、锌溶液连续过滤 2.及时补加和调整溶液 3.定期去除溶液中的杂质	1.镀镍溶液) 2.及时补加和 3.定期去除溶剂	1调整溶液	镀镍等溶液连续过滤,及时补加调整溶液;定期去除溶 液杂质。(I级)	100
装备 指标		电镀生产线要求	Ż	0.4	电镀生产线采用节能措施 ² ,70%生产线实现自动 化或半自动化 ⁷	电镀生产线采用节能措施 ² ,70%生产线实现自动 电镀生产线采用节能措施 ² ,50%生产线 电镀生产线采用节能措施 ²		使用高频开关电源,其直流母线压降不超过 10%并且极 杠清洁、导电良好;电镀线使用电等清洁能源;项目电 镀线自动化程度达 100%。(I 级)	100
		有节水设施		0.3		根据工艺选择逆流漂洗、淋洗、喷洗,电镀无单槽清洗等节水方式, 有用水计量装置,有在线水回收设施 根据工艺选择逆流漂洗、喷淋等, 电镀无单槽清洗等节水方式,有用 水计量装置		逆流漂洗,有计量装置,有在线水回收设施。(I级)	100
资源 消耗 指标	0.10).10 *单位产品每次 清洗取水量 ³ L/m ²		1	≤8	≤24	≤40	2.19	100
	锌利用率 4 %		%	0.8/n	≥82	≥80	≥75	/	/
		铜利用率 ⁴ % 0.8/n		0.8/n	≥90	≥80 ≥75		90.20 (1级)	100
资源		镍利用率 4 % 0.8/n		0.8/n	≥95	≥85	≥80	95.12 (Ⅰ级)	100
综合	0.10	装饰铬利用率 4	%	0.8/n	≥60	≥24	≥20	/	/
利用	0.18	硬铬利用率 4	%	0.8/n	≥90	≥80	≥70	/	/
指标	Ī	金利用率 4	%	0.8/n	≥98	≥95	≥90	98.18 (I 级)	100
		银利用率 4	%	0.8/n	≥98	≥95	≥90	98 (I 级)	100
		电镀用水重复利用率	%	0.2	≥60	≥40	≥30	60 (1级)	100
污染		*电镀废水处理率 10 % 0		0.5		100 (I级)	100		
物 产生	0.16	*有减少重金属污 污染预防措施		0.2	使用四项以上(含四项)调	心少镀液带出措施	1.镀件缓慢出槽; 2.科学装挂镀件; 3.增加镀液回收槽; 4.镀槽间装导流板; 5.有回收重金属措施。(I级)	100	
指标		*危险废物污染预防	措施	0.3	电镀污泥和废液在企业内回收或送到	有资质单位回收重金属,交外单位转移须	提供危险废物转移联单	废液送有相关危险废物经营许可证的单位处置。(I级)	100
产品 特征 指标	0.07	产品合格率保障指	i施 6	1	有镀液成分和杂质定量检测措施、有记录;产品质量检测设备和产品检测记录	有镀液成分定量检测措施、有记录; 有	了产品质量检测设备和产品检测记录	有镀液成分和杂质定量检测措施、有记录;产品质量检测设备和产品检测记录。(I级)	100
		*环境法律法规标准执	1.行情况	0.2	废水、废气、噪声等污染物排放符合国家和地	方排放标准;主要污染物排放应达到国家	和地方污染物排放总量控制指标	污染物达标排放(I级)	100
	Ī	*产业政策执行情		0.2	生产规模	和工艺符合国家和地方相关产业政策		生产规模和工艺符合国家和地方相关产业政策。(I级)	100
		环境管理体系制度及 清洁生产审核情况		0.1	按照 GB/T 24001 建立并运行环 境管理体系,环境管理程序文件 及作业文件齐备;按照国家和地 方要求,开展清洁生产审核	拥有健全的环境管理体系和完备的管理 清洁生产		按要求建立运行环境管理体系,开展清洁生产审核。(I 级)	100
		*危险化学品管	理	0.1	符合《允	也 险化学品安全管理条例》相关要求		符合《危险化学品安全管理条例》相关要求(I级)	100
指标	0.16	废水、废气处理设施 运行管理		0.1	非电镀车间废水不得混入电镀废水处理系统;建有废水处理设施运行中控系统,包括自动加药装置等;出水口有pH自动监测装置,建立治污设施运行台账;对有害气体有良好净化装置,并定期检测	非电镀车间废水不得混入电镀废水处理系统;建立治污设施运行台账,有自动加药装置,出水口有 pH 自动监测装置;对有害气体有良好净化装置,并定期检测	非电镀车间废水不得混入电镀废水处理系统;建立治污设施运行台账,出水口有 pH 自动监测装置,对有害气体有良好净化装置,并定期检测	雨污分流,生活污水进三角镇生活污水处理厂处理,电镀生产废水进高平污水处理有限公司处理;有废水处理设施中控系统,包括自动加药装置等;出水口有pH自动监测装置,建立治污设施运行台账;电镀废气进处理达标后排放,天然气燃烧废气收集后高空排放,运营过程将对废气治理设备定期检查。(I级)	100
		*危险废物处理处	置	0.1	危险废	物按照 GB 18597 等相关规定执行		危险废物按照 GB 18597 等相关规定执行。(I级)	100
		能源计量器具配备	情况	0.1	能源计	量器具配备率符合 GB17167 标准		能源计量器具配备率符合 GB17167 标准。(I 级)	100
		*环境应急预第	Ę	0.1	编制系统	的环境应急预案并开展环境应急演练		编制系统的环境应急预案并开展环境应急演练。(I级)	100

一级 指标 指标 权重	二级指标	単位 二级指标 权重	I 级基准值	II 级基准值	III级基准值	本项目指标值	本项目与 I级基准 值对比得 分
----------------------	------	---------------	--------	---------	---------	--------	---------------------------

注: 带"*"号的指标为限定性指标

- 1 使用金属回收工艺可以选用镀液回收槽、离子交换法回收、膜处理回收、电镀污泥交有资质单位回收金属等方法。
- 2 电镀生产线节能措施包括使用高频开关电源和/或可控硅整流器和/或脉冲电源,其直流母线压降不超过10%并且极杠清洁、导电良好、淘汰高耗能设备、使用清洁燃料。
- 3"每次清洗取水量"是指按操作规程每次清洗所耗用水量,多级逆流漂洗按级数计算清洗次数。
- 4 镀锌、铜、镍、装饰铬、硬铬、镀金和含氰镀银为七个常规镀种,计算金属利用率时 n 为被审核镀种数;镀锡、无氰镀银等其他镀种可以参照"铜利用率"计算。
- 5 减少单位产品重金属污染物产生量的措施包括:镀件缓慢出槽以延长镀液滴流时间(影响产品质量的除外)、挂具浸塑、科学装挂镀件、增加镀液回收槽、镀槽间装导流板,槽上喷雾清洗或淋洗(非加热镀槽除外)、在线或离线回收重金属等。
- 6 提高电镀产品合格率是最有效减少污染物产生的措施,"有镀液成分和杂质定量检测措施、有记录"是指使用仪器定量检测镀液成分和主要杂质并有日常运行记录或委外检测报告。
- 7 自动生产线所占百分比以产能计算; 多品种、小批量生产的电镀企业(车间)对生产线自动化没有要求。
- 8 生产车间基本要求:设备和管道无跑、冒、滴、漏,有可靠的防范泄漏措施、生产作业地面、输送废水管道、废水处理系统有防腐防渗措施、有酸雾、氰化氢、氟化物、颗粒物等废气净化设施,有运行记录。
- 9 低铬钝化指钝化液中铬酸酐含量低于 5g/l。
- 10 电镀废水处理量应≥电镀车间(生产线)总用水量的 85%(高温处理槽为主的生产线除外)。
- 11 非电镀车间废水: 电镀车间废水包括电镀车间生产、现场洗手、洗工服、洗澡、化验室等产生的废水。其他无关车间并不含重金属的废水为"非电镀车间废水"。

4.4.6 环境管理要求

项目拟采取的环境管理措施汇总如下。

表 4.4-4 项目拟采取的环境管理措施一览表

		711112411111111111111111111111111111111								
序号	清	洁生产指标	拟采取的环境管理措施							
1	环境法律法规标准		符合国家和地方有关环境法律、法规、污染物排放达到国家和地 方排放标准、总量控制和排污许可证管理要求							
2	组织机构		建立健全专门环境管理机构和专职管理人员,开展环保和清洁生产有关工作							
3	环	境管理审核	按照 ISO 14001 建立并运行环境管理体系,环境管理手册、程序、 文件及作业文件齐备							
4		岗位培训	所有岗位进行过严格培训							
5	生产 过程	/	/	/	/	/	/	各岗位操作管 理、设备管理	建立完善的管理制度并严格执行,设备完好率达 100%,逐步杜 绝跑、冒、漏、滴	
6	环境 原料、燃料消 管理 耗及质检		建立原料质检制度和原料消耗定额管理制度,安装计量装置或仪表,对能耗、物料消耗及水耗进行严格定量考核							
7		三废管理	逐步实现对各个废物流(废水、废气、固体废物)进行例行监控, 确保环保设施正常运行							

4.4.7 清洁生产评价结论

经计算,本项目电镀线 Y_1 =92.8,且电镀线限定性指标均全部满足 I 级基准值要求,因此本项目电镀车间为 I 级,达到国际清洁生产领先水平。

5 环境现状调查与评价

5.1自然环境概况

5.1.1 地理位置

中山市位于广东省中南部,珠江三角洲中部偏南的西、北江下游出海处,北接广州市番禺区和佛山市顺德区,西邻江门市区、新会区和珠海市斗门区,东南连珠海市,东隔珠江口伶仃洋与深圳市和香港特别行政区相望。全境位于北纬 22°11′~22°47′,东经113°09′~113°46′之间。行政管辖面积 1800.14 平方公里。市中心陆路北距广州市区 86 公里,东南至澳门 65 公里,由中山港水路到香港 52 海里。

三角镇位于中山市北部偏东,交通便利,京珠高速公路穿越镇域南北,省道南三公路横贯镇域东西,往广州、深圳、珠海、佛山、东莞、江门等市均在1小时车程内,往中山港、南沙港等国际港口在20分钟车程内。

5.1.2 地质地貌

(1) 地质

中山市出露地层以广泛发育的新生界第四系为主;在北部、中部和南部出露有古生界和中生界地层,主要包括寒武系、泥盆系、侏罗系及白垩系等;另外在北部还零星出露有元古界震旦系的古老地层。

新生界第四系在区内广泛分布,按其成因主要分为:

残积层主要为花岗岩及其他岩石的风化土,分布于市境低山丘陵和台地,以棕红色一黄褐色砾质亚粘土为主。石英细砾的含量较高可达 15%-30%,局部为砾质粘土,越往下砂质越多。风化壳的厚度一般为 20-30 米。

冲洪积层主要分布在五桂山低山丘陵台地区内的小河谷和沟谷,三乡镇平岚以北到雍陌以西一带以及坦洲镇申堂和月环等地。以裼黄色中或粗砂、砂砾、角砾为主,含泥质,一般厚度为8-15米。申堂附近一级洪积阶地的砾石以5-19厘米占多数,平均磨圆度仅1.6级。

冲积海积层是市境内分布面积最广、范围最大的第四纪沉积,占全市第四纪沉积面

积的 90%以上。主要分布在平原地区,构成海拔 2 米左右及以下的坡度平缓的海积冲积平原。该地层组成以灰黑色淤泥、亚粘土及部分灰白色细砂、粗砂和砂砾为主,一般厚度在 10-20 米,最厚可达 60 米以上,层内普遍含有蚝壳。

海积层主要分布于南蓢镇龙穴至翠亨村镇下沙沿伶仃洋岸一线,以黄灰色细砂一粗砂为主,组成了绵延十多公里的砂堤砂地。砂堤外侧多为淤泥岸滩。

中山市的地质构造体系属于华南褶皱束的粤北、粤东北、粤中坳陷带内的粤中坳陷。粤中坳陷又分为若干个隆断束,中山则位于其中的增城-台山隆断束的西南段。

中山地质发展历史悠久, 地壳变动频繁, 但由于地层分布比较简单, 尤其是富矿地层相对比较缺乏, 因而矿产资源不丰富。已探明的矿产, 除花岗岩石料、砂料和耐火粘土外, 大部分都是小型矿床或矿点, 大规模工业开采的价值不大。

(2) 地貌

中山市平面形状南北狭长,约 66 公里,东西短窄,约 45 公里,轮廓酷似;一个紧握而向上举的拳头。市境陆地总面积 1683 平方公里,其中平原占 68%,是—个以平原为主的地区。

市境地势中高周低;地貌层状结构明显,类型丰富多样,但以平原为主;地貌形态明显受北东、北西走向的地质构造控制。根据地貌的形态、成因、物质、年龄等要素,可将地貌分为4大类、10亚类和29种微地貌。

根据地貌的平面分布及形成特点,全市地貌大致可以分成北部平原区、西南部平原区、南部平原区和中部五桂山-白水林低山丘陵台地区等四个区。

5.1.3 气象气候

中山地处北回归线以南,濒临海洋,受热带季风影响,属南亚热带季风海洋性气候, 光热充足,雨量充沛,干湿分明。根据中山市气象站近 20 年(2001-2020 年)的气象观 测资料分析,中山市的气候与气象概况如下:

(1) 气温

中山市 2001-2020 年平均气温 23.0°C,极端最高气温 38.7°C,分别出现在 2005 年 7 月 18 日和 2005 年 7 月 19 日,极端最低温 1.9°C,分别出现在 2016 年 1 月 24 日。中山市月平均温度的变化范围在 14.6~29.1°C之间;其中七月平均温度最高,为 29.1°C;一月平均温度最低,为 14.6°C。

(2) 风速

中山市 2001-2020 年平均风速为 1.9m/s, 各月的平均风速变化范围在 1.6~2.2m/s 之间, 六、七月份平均风速最大, 为 2.2m/s, 一月、十一月平均风速最小, 为 1.6m/s。

(3) 风向、风频

根据 2001-2020 年风向资料统计,中山地区主导风为 N 风,频率为 10.3%。

(4) 降水

中山地区降水具有雨量多、强度大、年际变化大、年内分配不均匀等特点。2001-2020年的平均年降水量为1918.44mm,年雨量最大为2888.2mm(2016年),最少为1378.6mm(2020年)。

(5) 相对湿度、日照

中山市 2001~2020 年平均相对湿度为 76.45%。中山市全年日照充足,中山市 2001~ 2020 年平均日照时数为 1796.9 小时。

(7) 自然灾害

中山市属滨海地区,影响中山市的主要自然灾害有暴雨、台风、洪水、暴潮和咸潮。 ①暴雨

中山市年平均降雨量 1918.44mm,根据资料记录,历史日最大降雨量为 412.8mm(出现在 1981年6月30日),由于受五桂山山脉地形的影响,形成历年市区的降水强度与南部、西部的神湾、东部的横门相对较弱。暴雨出现机率多集中在4~9月,高峰值,多发生在5、6月份和8月份。

②台风(热带气旋)及暴潮

7、8、9三个月是台风(热带气旋)出现的盛发期,出现百分率分别是 25.2%、21.3%、19.1%,登陆中山市最强的台风多在 9 月。据历史资料反映,大多数年份,每年影响中山市的台风有 4~6 个,每 8~9 年受台风正面袭击一次。台风风向对中山影响最大是:东部是东南风至东风,南部是东南风至南风,因这些风向,正对出海口,吹程较大,潮水顶托。

③洪水

中山市地处珠江口西岸,珠江八大出海口途经中山的有 3 个。每年汛期(4 至 10 月),西、北江洪水有 66.84%经中山市渲泄,威胁中山市北部堤围的安全。历史最高洪水位 5.34m(莺哥咀水位站),出现于 1994 年 6 月 20 日,相当于 200 年一遇水位。 253

中山市的出海河流主要是渲泄上、中游洪水。每逢台风袭击又遇上大潮时,形成台风暴潮,对中山市东部和南部堤围安全构成威胁特别大。

另外还有低温、霜冻、低温阴雨、干旱和雷暴等灾害性天气。

5.1.4 水文状况

中山市河网密度是中国较大的地区之一。各水道和河涌承纳了西、北江来水,每年4月开始涨水,10月逐渐下降,汛期达半年以上。东北部是北江水系的洪奇沥水道;中部是东海水道,下分支鸡鸦水道和小榄水道,汇合注入洪奇沥水道;西部为西江干流,在磨刀门出海。还有黄圃水道、黄沙沥等互相沟通,形成了纵横交错的河网地带。

石岐河:横穿市境中部,往东北经郊区、张家边区出东河口水闸,注入洪奇沥水道; 西往南经环城区和板芙镇,至西河口水闸,出螺洲门,全长 46km,面宽 80 至 200m, 平均水深 2.05m,平均流速 0.24m/s。

大环河(小隐涌):发源于五桂山主峰和风吹罗带峰之间。主干流向北及东北,流经大寮村会童子坑水,过旧屋林,出西桠,经大环村,注入洪奇沥水道。全长25km,面宽8至15m。

鸡鸦水道北接容桂水道,两岸北起经东风、阜沙镇;东岸北起经南头镇、马新联围和民三联围,在大南尾与小榄水道汇流,注入洪奇沥水道出海,全长33公里,面宽200至300米。该水道渲泄西江洪流,两岸成为中山市的防洪地区。

长江水厂近期水源为长江水库。长江水库位于中山城区,总库容 5040 万 m3,其中 兴利库容为 3132 万 m3,最低允许取水库容为 700 万 m3,集水面积为 36.4 km2。2004 年~2008 年期间:长江水库年平均供水量为 2123.30 万 m3 (其中长江水厂为 1401.58 万 m3,其他单位为 721.72 万 m3)。长江水库最高水位为 25.58 m (库容为 3314 万 m3);最低水位为 19.69m (库容为 1289 万 m3)。

洪奇沥水道在万顷沙西,为北江主要出海水道,无"门"地形,是珠江八大入海口门的泄径流通道之一。多年平均流量约 200.10 亿 m3/a;,河口拦门沙发育,故进潮量 (96.6 亿立方米) 和落潮量 (296.7 亿立方米) 均小,水量已大部由上、下横沥流出蕉门。山潮水比为 2.0,径流为主,旱季为潮流河。该水道北起番禺区版沙尾村并且与容桂水道和李家沙水道向连接;南到番禺区万顷沙注入伶仃洋西北部。洪奇沥水道全长约 20km;宽 400~1200m;多年平均流量 634.51m3/s,90%保证率的最枯月平均流量为 277m3/s;

多年平均潮流量 306.32 m3/s。

5.1.5 土壤和植被情况

中山市主要土壤类型为赤红壤、水稻土、基水地、滨海盐渍沼泽土和滨海沙土。自然植被以人工林和天然常绿季雨林为主,另有季风性常绿阔叶林和红树林零星分布,森林覆盖率为12.95%。现已开辟翠亨—五桂山风景名胜区,市郊古香林为近郊森林公园,在市北部、西部、南部建立了农业生态环境保护区。市区建有100hm2的生态公园,绿化覆盖率达35.96%,人均公共绿地面积达9.39平方米。其中,紫马岭公园占地87.53hm2,是广东省最大的具有城市功能和生态功能的公园之一。

农作物主要有粮食作物:水稻、小麦、蕃薯、马铃薯;油料作物:花生、油菜、黄豆;经济作物:甘蔗,桑、蚕;水果:荔枝、龙眼、香大焦、柑桔、橙、柚、波萝等;蔬菜品种繁多,五类干蔬、青亩瓜豆等60多个,遍布全市;食用菌:草菇、磨菇、平菇、冬菇等。

5.2大气环境现状调查与评价

5.2.1 区域环境质量状况

项目技改扩建后位于中山市三角镇高平化工区,大气评价范围为 5km 的矩形范围, 其大气环境主要涉及中山市和广州市,故需调查中山市和广州市的区域环境质量状况。

5.2.1.1 中山市区域环境质量状况

根据《中山市 2021 年大气环境质量状况公报》,中山市城市 SO₂、NO₂、PM₁₀、PM_{2.5}的年均值及相应的日均值特定百分位数浓度值、CO 日均值第 95 百分位数浓度值、O₃日最大 8 小时滑动平均值的第 90 百分位数浓度值均达到《环境空气质量标准》(GB3095-2012)及 2018 年修改单的二级标准要求,项目中山市为达标区。

污染物	年评价指标	现状浓度 (μg/m³)	标准值 (μg/m³)	占标率 (%)	达标情况
SO ₂	24 小时平均第 98 百分位数	9	150	6	达标
	年平均质量浓度	5	60	8.33	达标

表 5.2-1 区域环境空气质量现状评价表

污染物	年评价指标	现状浓度 (μg/m³)	标准值 (μg/m³)	占标率 (%)	达标情况
NO	24 小时平均第 98 百分位数	75	80	93.75	达标
NO_2	年平均质量浓度	25	40	62.5	达标
DM	24 小时平均第 95 百分位数	84	150	56	达标
PM_{10}	年平均质量浓度	39	70	55.71	达标
DM	24 小时平均第 95 百分位数	46	75	61.3	达标
PM _{2.5}	年平均质量浓度	20	35	57.1	达标
O ₃	8 小时平均第 90 百分位数	154	160	96.3	达标
CO	24 小时平均第 95 百分位数	900	4000	22.5	达标

项目位于高平工业区电镀基地,最近的常规监测站为民众站,民众站 2020 年监测数据统计如下:

表 5.2-2 基本污染物环境质量现状

点	监测点	坐标/m					最大	超标	
位 名 称	X	Y	污染 物	年评价指标	评价标准 (μg/m³)	现状浓度 (μg/m³)	浓度 占标 率%	超份 频 率%	达标 情况
			SO_2	24 小时平均第 98 百分位数	150	14	11.3	0.00	达标
				年平均	60	8.44	/	/	达标
	113°29′		NO ₂	24 小时平均第 98 百分位数	80	75	136.25	1.37	达标
				年平均	40	26.03	/	/	达标
民人		22°37′	PM ₁₀	24 小时平均第 95 百分位数	150	100	96	0.00	达标
众 站	34.28"	39.51"		年平均	70	42.55	/	/	达标
四				24 小时平均第 95 百分位数	75	45	98.7	0.00	达标
			5	年平均	35	17.92	/	/	达标
			O ₃	8 小时平均第 90 百分位数	160	168	165	12.05	超标
			СО	24 小时平均第 95 百分位数	4000	1000	35	0.00	达标

由表 5.2-2 可知, SO₂年平均及日均值第 98 百分位数浓度达到《环境空气质量标准》 (GB3095-2012) 二级标准及修改单; PM₁₀年平均及日均值第 95 百分位数浓度达到《环境空气质量标准》 (GB3095-2012) 二级标准及修改单; PM_{2.5}年平均及日均值第 95 百分位数浓度均达到《环境空气质量标准》 (GB3095-2012) 二级标准及修改单; CO 日均值第 95 百分位数达到《环境空气质量标准》 (GB3095-2012) 二级标准及修改单; NO₂ 年平均浓度及日均值第 98 百分位数浓度达到《环境空气质量标准》(GB3095-2012) 256

二级标准及修改单; O₃ 日最大 8 小时平均第 90 百分位数浓度超过《环境空气质量标准》 (GB3095-2012)二级标准及修改单。

5.2.1.2 广州市区域环境质量现状

根据《广州市环境空气功能区区划(修订)》(穗府[2013]17号),本项目所在地属于二类功能区,执行《环境空气质量标准》(GB3095-2012)二级标准及修改单。

评价引用广州市生态环境局网站公布《2021 年广州市环境质量状况公报》,具体结果见下表。

表 5.2-3 环境空气主要污染物浓度

单位: μg/m³ (CO: mg/m³)

行政区	综合指数	达标天数 比例(%)	SO ₂	NO ₂	PM ₁₀	PM _{2.5}	СО	O ₃
南沙区	3.58	85.2	8	35	45	22	1.0	168
广州市	3.58	88.5	8	34	46	24	1.0	160
标准			60	40	70	35	4	160

由上表可知,南沙区 SO₂、NO₂、PM₁₀、PM_{2.5}年平均质量浓度、CO 95 百分位数日平均质量浓度可达到《环境空气质量标准》(GB3095-2012)二级标准及修改单,O₃ 90百分位数日最大 8 小时平均质量浓度尚未达到《环境空气质量标准》(GB3095-2012)二级标准及修改单。南沙区判定为不达标区。

广州市 SO₂、NO₂、PM₁₀、PM_{2.5} 年平均质量浓度、CO 95 百分位数日平均质量浓度可达到《环境空气质量标准》(GB3095-2012)二级标准及修改单,O₃ 90 百分位数日最大 8 小时平均质量浓度可达到《环境空气质量标准》(GB3095-2012)二级标准及修改单。广州市判定为达标区。

综上所述,项目所在地为不达标区。

5.2.2 环境空气质量补充监测

5.2.2.1 评价范围

根据本项目的特点及《环境影响评价技术导则——大气环境》(HJ2.2-2018)的要求,监测评价范围确定为以厂址为中心,边长为 5km 的矩形区域。建设项目环境空气评价范围边长为 5km 的矩形。

5.2.2.2 监测因子

特征监测因子: 氯化氢、硫酸雾、氰化氢、铬酸雾、TSP、TVOC、非甲烷总烃、 臭气浓度、氨。

5.2.2.3 监测布点

根据《环境影响评价技术导则(HJ2.2-2018)》中环境空气现状监测布点原则,要尽量全面、客观、真实反映评价范围内的环境空气质量,结合本工程的污染特征、地形分布及评价区域环境功能区划要求,本项目监测在项目所在地布设1个监测点,选取氯化氢、臭气浓度、TVOC、硫酸雾、非甲烷总烃、TSP为监测因子,委托广东中鑫检测技术有限公司进行监测,监测7天,监测时间为2022年2月12日至2022年2月18日(报告编号:ZXT2203023)。氰化氢、铬酸雾、氨引用《中山市朝阳五金制品表面处理有限公司》的现状监测数据(监测报告编号:ZXT2303107-1),监测点为高平村。

		, , , , , ,				
	监测点	坐标			相对	相对厂
监测站名称	X	v	监测因子	监测时段	厂区	界距离
	Λ	1			方位	/m
			氯化氢、臭气浓度、	2022年2月		
项目所在地	113°28′12.52″	22°42′32.45″	2°42′32.45″ TVOC、硫酸雾、非		/	/
			甲烷总烃、TSP	日		
卓亚村	11202010 5511	22942/21 70//	氰化氢、铬酸雾、氨	2023年3月7	西南	125
高平村	113°28′0.55″	22°42′21.79″	青(化全)、 始 的 务、 安	日~3月13日	四開	435

表 5.2-4 项目空气质量补充监测点位基本信息

图 5.2-1 大气现状引用监测点位图

5.2.2.4 监测时间及监测频率

1、监测时间

根据本项目所在地区环境空气污染特征污染物排放情况,项目空气现状补充监测委托广东中鑫检测技术有限公司进行,于 2022 年 2 月 12 日~2022 年 2 月 18 日在项目所在地对氯化氢、臭气浓度、TVOC、硫酸雾、非甲烷总烃、总悬浮颗粒物进行采样检测;另外氰化氢、铬酸雾、氨等空气现状调查,引用《中山市朝阳五金制品表面处理有限公司》的现状监测数据(监测报告编号: ZXT2303107-1),由广东中鑫检测技术有限公司于 20223 年 3 月 7 日~2023 年 3 月 13 日在高平村进行采样检测。

2、监测频率

氯化氢、非甲烷总烃、硫酸雾、臭气浓度、氨:采样频次为每天 4 次,连续采样 7 天; TVOC:每天连续监测 8 小时,连续采样 7 天; 氰化氢、铬酸雾、TSP:采样频次为每天 1 次,连续采样 7 天。并同时记录监测时现场的气象条件。

5.2.2.5 监测及分析方法

监测及分析方法均按照国家环境保护总局发布的《环境空气质量监测规范(试行)》、《环境空气质量标准》(GB3095-2012)的方法进行。各项目具体选定的分析方法和最低检出限如下表所示。

监测项 序号 分析仪器 检出限/测定范围 分析方法 (来源) 目 《环境空气和废气氯化氢的测定 离子色谱仪 1 氯化氢 $0.02 \, \text{mg/m}^3$ 离子色谱法》HJ549-2016 PIC-D10 《室内空气质量标准》 (GBT18883-2002) 中附录 C 室内 气相色谱仪 2 **TVOC** 空气中总挥发性有机物((TVOC)) $0.5 \mu g/m^3 - 100 mg/m^3$ A60 的检验方法热解吸-毛细管气相色 谱法 臭气浓 《空气质量恶臭的测定三点比较 10 (无量纲) 3 式臭袋法》GBT14675-1993 度 《环境空气总悬浮颗粒物的测定 万分之一天 总悬浮 4 $0.001 \, mg/m^3$ 颗粒物 重量法》GB/T15432-1995 及其修 平 FA2004

表 5.2-5 监测及分析方法

		改单(生态环境部公告 2018 年第		
		31号)		
5	硫酸雾	《空气和废气监测分析方法》(第四版增补版)国家环境保护总局(2003年)铬酸钡分光光度法(B)5.4.4.1	紫外可见分 光光度计 T6 新世纪	
6	非甲烷 总烃	《环境空气总烃、甲烷和非甲烷总 烃的测定直接进样-气相色谱法》 HJ604-2017	气象色谱仪 V5000	$0.07 \mathrm{mg/m^3}$
7	氰化氢	《固定污染源排气中氰化氢的测定 异烟酸·吡唑啉酮分光光度法》 HJ/T28-1999	紫外可见分 光光度计 T6 新世纪	$0.002 mg/m^3$
8	铬酸雾	《固定污染源排气中铬酸雾的测定 二苯基碳酰二肼分光光度法》 HJ/T28-1999	紫外可见分 光光度计 T6 新悦	5×10 ⁻⁴ mg/m ³
9	氨	《环境空气和废气 氨的测定 纳 氏试剂分光光度法》HJ533-2009	紫外可见分 光光度计 T6 新世纪	$0.01 \mathrm{mg/m^3}$

5.2.2.6 监测结果及现状评价

监测阶段气象条件、检测结果、评价结果分别如表 5.2-6~5.2-8 所示。

表 5.2-6 现状补充监测的大气监测气象条件

采样日期	松测压日	及転》	气温(℃)	气压	湿度(%)	风速(m/s)	风向	天气状况
木件口州	│ 检测项目	及频仅	(KPa)	例及(%)		XVI⊓1	- TANDE	
	G	1 项目所在	地(中山市	5金美达金	属表面处理	有限公司)		
	总悬浮幂	页粒物	14.0	102.5	71.3	2.1	南风	晴
	TVC	OC .	16.1	102.2	69.3	1.7	南风	晴
2022.2.12	氯化氢、硫	第一次	16.1	102.2	69.3	1.5	南风	晴
2022.2.12	酸雾、非甲	第二次	18.3	102.0	61.9	1.5	南风	晴
	烷总烃、臭	第三次	18.0	102.0	63.1	1.6	南风	晴
	气浓度	第四次	15.8	102.4	69.9	1.8	南风	晴
	总悬浮颗粒物		10.8	102.7	78.3	2.4	北风	晴
	TVC	OC	14.2	102.5	71.4	1.9	北风	晴
2022.2.13	氯化氢、硫	第一次	14.2	102.5	71.4	1.9	北风	晴
2022.2.13	酸雾、非甲	第二次	16.5	102.2	65.5	1.8	北风	晴
	烷总烃、臭	第三次	17.9	102.1	64.4	1.6	北风	晴
	气浓度	第四次	15.2	102.4	66.8	1.8	北风	晴
2022.2.14	总悬浮颗粒物		12.6	102.6	68.3	1.6	东南风	晴
2022.2.14	TVC	OC	14.9	102.4	61.2	1.5	东南风	晴

	氯化氢、硫	第一次	14.9	102.4	61.2	1.5	东南风	
	酸雾、非甲	第二次	19.0	101.8	53.6	1.5	东南风	晴
	烷总烃、臭	第三次	18.2	101.9	54.3	1.7	东南风	晴
	气浓度	第四次	16.3	102.2	58.4	1.9	东南风	晴
	总悬浮精		12.8	102.5	68.9	2.2	东南风	晴
	TVC	OC .	14.0	102.4	65.5	2.0	东南风	晴
2022.2.15	氯化氢、硫	第一次	14.0	102.4	65.5	2.0	东南风	晴
2022.2.13	酸雾、非甲	第二次	15.1	102.1	59.4	1.8	东南风	晴
	烷总烃、臭	第三次	15.6	102.1	58.3	1.4	东南风	晴
	气浓度	第四次	14.6	102.3	61.1	1.6	东南风	晴
	总悬浮幂		15.0	102.3	64.3	1.6	东南风	晴
	TVOC		16.4	102.2	60.3	1.3	东南风	晴
2022.2.16	氯化氢、硫	第一次	16.4	102.2	60.3	1.3	东南风	晴
2022.2.10	酸雾、非甲	第二次	18.8	102.0	58.4	1.6	东南风	晴
	烷总烃、臭	第三次	18.1	102.0	56.7	1.4	东南风	晴
	气浓度	第四次	16.3	102.2	61.2	1.8	东南风	晴
	总悬浮幂	 颁粒物	14.3	102.5	60.4	2.8	东南风	晴
	TVC	OC .	15.4	102.3	56.1	2.2	东南风	晴
2022.2.17	氯化氢、硫	第一次	15.4	102.3	56.1	2.2	东南风	晴
2022.2.17	酸雾、非甲	第二次	16.8	102.1	50.4	1.9	东南风	晴
	烷总烃、臭	第三次	17.2	102.0	48.4	2.0	东南风	晴
	气浓度	第四次	16.0	102.2	53.3	1.9	东南风	晴
	总悬浮幂		9.1	102.8	59.4	2.5	北风	晴
	TVC	OC .	11.6	102.6	55.3	2.1	北风	晴
2022.2.18	氯化氢、硫	第一次	11.6	102.6	55.3	2.1	北风	晴
2022.2.10	酸雾、非甲	第二次	14.8	102.4	50.9	1.8	北风	晴
	烷总烃、臭	第三次	14.9	102.4	45.3	2.1	北风	晴
	气浓度	第四次	11.2	102.6	54.3	1.9	北风	晴

表 5.2-7 现状引用数据的大气监测气象条件

采样日期	检测项目	及频次	气温(℃)	气压 (KPa)	湿度 (%)	风速(m/s)	风向	天气状况
		高	平村(项目	西南面,	距离 435m)		
	氰化氢、	铬酸雾	15.4	102.4	70.3	2.4	东北风	晴
		第一次	17.9	101.9	63.1	2.1	东北风	晴
2023.3.7	氨	第二次	26.7	101.0	57.3	2.3	东北风	晴
		第三次	23.6	101.3	60.4	1.9	东北风	晴
		第四次	20.8	101.5	61.4	2.0	东北风	晴
	氰化氢、	氰化氢、铬酸雾		102.4	70.8	2.5	东南风	晴
2023.3.8		第一次	17.3	101.9	64.5	2.3	东南风	晴
2023.3.8	氨	第二次	25.6	100.9	58.6	1.9	东南风	晴
		第三次	22.9	101.2	61.4	2.4	东南风	晴

		第四次	19.9	101.6	63.1	2.4	东南风	晴
	氰化氢、	铬酸雾	15.8	102.4	69.9	2.2	东南风	晴
		第一次	18.1	101.8	66.1	2.0	东南风	晴
2023.3.9	氨	第二次	27.1	100.7	56.3	2.2	东南风	晴
	安(第三次	24.1	100.9	59.3	1.8	东南风	晴
		第四次	20.8	101.3	62.1	2.2	东南风	晴
	氰化氢、	铬酸雾	14.9	102.4	72.3	2.5	东南风	晴
		第一次	17.6	101.9	65.4	2.4	东南风	晴
2023.3.10	氨	第二次	27.6	100.6	55.4	2.0	东南风	晴
	氨	第三次	23.7	100.8	60.2	2.1	东南风	晴
		第四次	21.2	101.1	63.0	1.8	东南风	晴
	氰化氢、	铬酸雾	14.2	102.5	73.2	2.6	东南风	晴
	氨	第一次	16.3	101.9	66.4	2.5	东南风	晴
2023.3.11		第二次	25.3	100.8	60.1	2.2	东南风	晴
		第三次	21.9	101.4	62.4	2.0	东南风	晴
		第四次	19.4	101.6	64.0	2.5	东南风	晴
	氰化氢、	铬酸雾	14.3	102.4	74.1	2.4	东南风	晴
		第一次	16.0	102.0	67.3	2.1	东南风	晴
2023.3.12	氨	第二次	26.2	100.8	59.4	2.4	东南风	晴
	女(第三次	21.4	101.4	61.9	2.0	东南风	晴
		第四次	19.7	101.6	65.2	1.9	东南风	晴
	氰化氢、	铬酸雾	14.9	102.3	74.3	2.4	东南风	阴
		第一次	17.4	101.9	65.9	1.9	东南风	阴
2023.3.13	氨	第二次	26.3	100.8	59.4	2.3	东南风	阴
	銰	第三次	23.1	101.1	62.6	2.0	东南风	阴
		第四次	20.3	101.5	64.3	1.8	东南风	阴

表 5.2-8 环境空气质量现状补充监测结果

采样日期	检测频次	检	测项目及检测	⊭	单位: mg/m³; 臭气浓度: 无量纲		
木件口朔	似侧侧()	非甲烷总烃	氯化氢	硫酸雾	臭气浓度	总悬浮颗粒物	TVOC
	第一次	0.43	ND	0.005	ND		
2022.2.12	第二次	0.40	ND	0.005	ND	0.103	0.07
2022.2.12	第三次	0.43	ND	0.005	ND	0.103	0.07
	第四次	0.42	ND	ND	ND		
	第一次	0.44	ND	0.005	ND		0.06
2022.2.13	第二次	0.40	ND	0.005	ND	0.134	
2022.2.13	第三次	0.46	ND	ND	ND		
	第四次	0.48	ND	0.005	ND		
2022.2.14	第一次	0.43	ND	0.005	ND		
	第二次	0.46	ND	ND	ND	0.165	0.10
	第三次	0.49	ND	ND	ND	0.165	0.10
	第四次	0.41	ND	0.005	ND		

	第一次	0.46	ND	ND	ND		0.07
2022 2 15	第二次	0.43	ND	ND	ND	0.140	
2022.2.15	第三次	0.41	ND	0.009	ND	0.140	
	第四次	0.42	ND	0.005	ND		
	第一次	0.44	ND	ND	ND		
2022 2 16	第二次	0.50	ND	ND	ND	0.128	0.11
2022.2.16	第三次	0.42	ND	ND	ND		
	第四次	0.48	ND	ND	ND		
	第一次	0.42	ND	ND	ND		0.05
2022.2.17	第二次	0.49	ND	0.005	ND	0.161	
2022.2.17	第三次	0.47	ND	ND	ND		
	第四次	0.46	ND	ND	ND		
2022.2.18	第一次	0.46	ND	ND	ND		
	第二次	0.50	ND	0.005	ND	0.137	0.08
	第三次	0.48	ND	ND	ND	0.13/	0.08
	第四次	0.44	ND	ND	ND		

表 5.2-9 环境空气质量现状引用监测数据

公长口钿	松咖啡	检测项目及检测的	課 单	单位: mg/m³	
采样日期 	│检测频次	氨	氰化氢	铬酸雾	
	第一次	0.01			
2023.3.7	第二次	0.02	ND	ND	
2023.3.7	第三次	0.01	ND	ND	
	第四次	0.02			
	第一次	0.01			
2023.3.8	第二次	0.02	ND	ND	
2023.3.8	第三次	0.02	ND	ND	
	第四次	0.01			
	第一次	0.02			
2022 2 0	第二次	0.02	ND	NID	
2023.3.9	第三次	0.01	ND	ND	
	第四次	0.02			
	第一次	0.01			
2023.3.10	第二次	0.02	ND	NID	
2023.3.10	第三次	0.02	ND	ND	
	第四次	0.01			
	第一次	0.03			
2022 2 11	第二次	0.02	ND	0.0005	
2023.3.11	第三次	0.01	ND	0.0005	
	第四次	0.02			
2023.3.12	第一次	0.02	ND	ND	
2023.3.12	第二次	0.02	ND	ND	

	第三次	0.03		
	第四次	0.01		
	第一次	0.01		
2022 2 12	第二次	0.02	ND	0.0005
2023.3.13	第三次	0.01	ND	0.0005
	第四次	0.02		

表 5.2-10 环境空气质量现状评价结果

监测点位	监测点坐标	污染物	平均时段	评价标准 (mg/m³)	监测浓度范 围(mg/m³)	最大浓 度占标 率/%	超标 率 (%)	达标 情况
		氯化氢	1h 平均	0.05	< 0.02	20	0	达标
		TVOC	8h平均	0.6	0.05-0.11	18.3	0	达标
项目		臭气浓 度	1次值	20	<10	25	0	达标
所在 地	E113°28′12.52″ N22°42′32.45″	总悬浮 颗粒物	日均值	0.3	0.103-0.165	55	0	达标
		硫酸雾	1h 平均	0.3	<0.05-0.09	30	0	达标
		非甲烷 总烃	1h 平均	2	0.40-0.50	25	0	达标
		氨	1h 平均	0.2	0.01~0.03	15	0	达标
高平村	E113°28′0.55″	氰化氢	昼夜平 均	0.01	<0.002	10	0	达标
11	N22°42′21.79″	铬酸雾	1 次值	0.0015	<0.0005~0.0 005	33%	0	达标

注: 计算污染指数时,污染物浓度<检出限时,浓度按检出限一半计算。

根据监测结果以及对监测结果最大浓度值占标率的分析,对评价区域内的环境空气质量现状评价如下:

(1) 氯化氢

在监测周期内, 氯化氢最大 1 次浓度占标率均为 40%, 满足《环境影响评价大气导则大气环境》(HJ2.2-2018)附录 D 限值。

(2) TVOC

在监测周期内,TVOC 最大 1 次浓度占标率为 18.3%,满足《环境影响评价大气导则大气环境》(HJ2.2-2018)附录 D 限值。

(3) 臭气浓度

在监测周期内,臭气浓度一次浓度监测值最大为<10(无量纲),最大 1 次度占标率均为 50%,满足《恶臭污染物排放标准》(GB14554-93)要求。

(4) 总悬浮颗粒物

在监测周期内,最大1次浓度占标率均为55%,满足《环境空气质量标准》(GB3095-2012)及2018年修改单的二级浓度限值。

(5) 硫酸雾

在监测周期内,最大1小时平均浓度占标率均为30%,满足《环境影响评价大气导则大气环境》(HJ2.2-2018)附录D限值。

(6) 非甲烷总烃

在监测周期内,最大1小时平均浓度占标率为25%,满足《大气污染物综合排放标准详解》的要求。

(7) 氰化氢

在监测周期内,最大1次浓度占标率为10%,满足前苏联(1974)居住区大气中有害物质的最大允许浓度要求。

(8) 铬酸雾

在监测周期内,最大1次浓度占标率为33%,满足《工业企业设计卫生标准》(TJ36-79)中居住区容许浓度的要求。

(9) 氨

在监测周期内,最大1小时平均浓度占标率均为15%,满足《环境影响评价大气导则大气环境》(HJ2.2-2018)附录D限值。

(10) 小结

从上述分析可知,评价区内氯化氢、TVOC、硫酸雾、氨监测指标符合《环境影响评价技术导则大气环境》(HJ 2.2-2018)中附录 D 其他污染物空气质量浓度参考限值;总悬浮颗粒物监测指标符合《环境空气质量标准》(GB3095-2012)中的二级标准及 2018年修改单参考限值;非甲烷总烃满足《大气污染物综合排放标准详解》中的标准限值;臭气浓度满足《恶臭污染物排放标准》(GB14554-93)的要求;铬酸雾满足《工业企业设计卫生标准》(TJ36-79)中居住区容许浓度要求;氰化氢满足前苏联(1974)居住区大气中有害物质的最大允许浓度要求。就以上几种监测因子而言,项目区域环境空气质量现状良好。

5.3地表水现状调查与评价

本项目生产废水经专置污水管网集中排入中山市三角镇高平污水处理有限公司进行处理,其中 60%作为回用水经专用管道返回给金美达公司作为生产用水使用,另外 40%的尾水经高平污水处理有限公司排污口最终排入洪奇沥水道。生活污水经污水收集管网输送到三角镇生活污水处理厂进行处理,达标后排入洪奇沥水道,即项目生活污水、生产废水间接排放,根据《环境影响评价技术导则-地表水环境》(HJ 2.3 - 2018)要求,项目地表水环境影响评价工作等级定为三级 B,重点分析生活污水、生产废水处理的可依托性。

5.4地下水环境现状调查与评价

根据《环境影响评价技术导则-地下水环境》(HJ 610-2016),本次项目地下水评价定为三级。

为了解项目所在区域地下水现状,本环评过程在项目周边设置 6 个地下水监测点 D1、D2、D3、D4、D5、D6,在本项目所在地设置 1 个监测点 D1,监测单位为广东中 鑫检测技术有限公司,监测日期为 2022 年 2 月 28 日。D2-D6 地下水监测点引用《中山市鸿城电镀有限公司技改扩建项目环境影响报告书》的现状监测数据,监测单位为广州 华鑫检测技术有限公司,监测日期为 2021 年 11 月 21 日。地下水监测点位均位于项目周边 6km² 范围内。

5.4.1 监测布点

根据《环境影响评价技术导则地下水环境》(HJ 610-2016)的要求,设置 6 个监测点。详情见表 5.4-1。

编号	监测点	监测点类别	备注
D1	项目所在地	水质、水位	现状监测
D2	项目北面 285m	水质、水位	现状监测
D3	项目西南面 1205m	水质、水位	现状监测

表 5.4-1 地下水环境监测点一览表

编号	监测点	监测点类别	备注
D4	项目西北面 245m	水位	现状监测
D5	项目东北面 304m	水位	现状监测
D6	项目南面 1095m	水位	现状监测

5.4.2 监测项目

(1) 水质: pH 值、硫酸盐、氯离子、氨氮、锌、铜、镉、铁、镍、总硬度、六价铬、砷、亚硝酸盐、硝酸盐、氰化物、耗氧量、溶解性总固体、阴离子表面活性剂、钾、钠、钙、镁、碳酸根盐、重碳酸盐、挥发性酚类。

(2) 水位

5.4.3 采样及分析方法

采样方法: 《地下水环境监测技术规范》(HJ/T 164-2004) 监测分析方法分析方法及检出限如下表所示。

表 5.4-2 地下水现状监测因子分析方法及检出限值

检测项目	检测分析方法	仪器名称、型号	检出限/测定 范围
pH 值	《水质 pH 的测定电极法》	便携式 PH 计	0-14
pii jii	HJ1147-2020	PHBJ260	0-14
硝酸盐	《水质无机阴离子(F-、Cl-、NO ₂ -、	京 乙 名 溢 心	0.016 mg/L
氯离子	Br-, NO_3 -, PO_4^{3-} , SO_3^{2-} , SO_4^{2-})	离子色谱仪 PEC-10	0.007 mg/L
硫酸盐	的测定 离子色谱法》HJ84-2016	FEC-10	0.018mg/L
铜	《水质 铜、锌、铅、镉的测定 原	百才四步八小小	0.05-5mg/L
锌	子吸收分光光度法》	原子吸收分光光 度计 A3AFG-12	0.2-10mg/L
镉	GB/T7475.5-1987)	支川 A3AFG-12	0.05-1mg/L
总硬度	《水质钙和镁总量的测定 EDTA	滴定管 25ml	0.05ma/I
心灰及	滴定法》GB/T7477-1987	间尺目 23IIII	$0.05\mathrm{mg/L}$
 六价铬	《生活饮用水标准检验方法金属	紫外可见分光光	0.004mg/L
/ / / / 1	指标》GB/T 5750.6-2006(10)	度计 T6 新世纪	0.004mg/L
砷	《水质汞、砷、硒、铋和锑的测	原子荧光光度计	$0.3 \mu g/L$
түү	定原子荧光法》HJ694-2014	RGF-6300	0.5μg/L
亚硝酸盐	《水质亚硝酸盐氮的测定分光光	紫外可见分光光	$0.003 \mathrm{mg/L}$
(氮)	度法》GB/T 7493-1987	度计 T6 新世纪	0.005mg/L
氰化物	《水质氰化物的测定容量法和分	紫外可见分光光	$0.001 \mathrm{mg/L}$
HI LO IN	光光度法》HJ484-2009	度计 T6 新世纪	0.00 mg/L

耗氧量	《生活饮用水标准检验方法有机物综合指标》(GB/T 5750.7-2006)	滴定管 25mL	0.05mg/L
溶解性总固体	《生活饮用水标准检验方法感观性状和物理指标》GB/T 5750.12-2006(8)	万分之一天平 FA2004	_
阴离子表 面活性剂	《水质阴离子表面活性剂的测定 亚甲蓝分光光度法》 GB/T11904-1989	紫外可见分光光 度计 T6 新世纪	0.05mg/L LAS
钾	 《水质钾和钠的测定火焰原子吸收		0.05-4.00mg/L
钠	分光光度法》GB/T11904-1989	原子分光光度计	0.01-2.00mg/L
钙	《水质钙和镁的测定原子吸收分	A3AFG-12	0.02mg/L
镁	光光度法》GB/T11905-1989		0.002mg/L
碳酸盐	《水和废水监测分析方法》(第		
重碳酸盐	四版增补版)国家环保总局(2002年)酸碱指示剂滴定法 3.1.12.1	滴定管 50ml	
挥发酚	《水质挥发酚的测定 4-氨基安 替比林分光光度法》(HJ 503-2009)	紫外可见分光光 度计 T6 新世纪	0.0003mg/L
氨氮	《水质氨氮的测定纳氏试剂分光 光度法》HJ535-2009	及月10 初巴纪	0.025mg/L
镍	《水质 镍的测定 火焰原子吸收分光光度法》GB/T11912-1989	原子吸收分光光 度计 A3AFG-12	0.05mg/L



图 5.4-1 地下水监测点位示意图

5.4.4 地下水环境现状评价

(1) 水质评价标准

采用国家《地下水质量标准》(GB14848-2017) V类标准,见下表。

表地下水质量标准

序号	项目	V类标准
1	pH 值	<5.5, >9
2	氨氮 (mg/L)	>1.50
3	六价铬(Cr ⁶⁺)(mg/L)	>0.10
4	铜(mg/L	>1.5
5	镍 (mg/L)	>0.10
6	镉(Cd)(mg/L)	>0.01
7	铁 (mg/L)	>2.0
8	锌 (mg/L)	>2.0
9	砷(As)(mg/L)	>0.05
10	挥发酚(以苯酚计)(mg/L)	>0.01
11	氰化物 (mg/L)	>0.1
12	溶解性总固体 (mg/L)	>2000
13	总硬度(以 CaCO ₃ 计)(mg/L)	>650
14	阴离子表面活性剂 (mg/L)	>100
15	硝酸盐 (mg/L)	>30.0
16	亚硝酸盐 (mg/L)	>4.8
17	耗氧量(COD _{Mn} ,法,以O ₂ 计)(mg/L)	>10.0
18	Na ⁺ (mg/L)	>400
19	K ⁺	/
20	Ca ²⁺	/
21	Mg ²⁺	/
22	CO ₃ ²⁻	/
23	HCO ₃ -	/
24	Cl ⁻	
25	SO ₄ ²⁻	

(2) 评价方法

水质现状评价采用国家环保局发布的《环境影响评价技术导则》(HJ/610-2016)中推

荐的标准指数法。

a) 对于评价标准为定值的水质因子, 其标准指数计算方法见下式:

$$P_i = \frac{C_i}{C_{si}}$$

式中: Pi-第i个水质因子的标准指数, 无量纲;

Ci—第 i 个水质因子的监测浓度值,mg/L;

Csi—第 i 个水质因子的标准浓度值, mg/L;

b) 对于评价标准为区间值的水质因子(如 pH 值), 其标准指数计算方法见下公式

$$P_{pH} = \frac{7.0 - pH}{7.0 - pH_{sd}}$$
 pH≤7 H·]
$$P_{pH} = \frac{pH - 7.0}{pH_{sd} - 7.0}$$
 pH>7 H·]

式中: PpH—pH 的标准指数, 无量纲;

pH—pH 监测值;

pHsu—标准中 pH 的上限值;

pHsd—标准中 pH 的下限值;

(3) 监测及评价结果

地下水环境现状监测和评价结果如下:

检测结果 单位: mg/L pH: 无量纲 监测点位 D1 D2 D3 样品性状 液态,浅黄色、 无嗅和味,无肉 无嗅和味,无 监测项目 无味、无浮油 眼可见物 肉眼可见物 pH 值 (无量纲) 7.2 7.0 6.8 硫酸盐 20.9 11.3 10.9 氯离子 3.41 15.6 4.84

表 5.4-3 地下水质量现状监测结果

锌	0.042	0.119	0.0846
铜	ND	3.54x10 ⁻³	4.54x10 ⁻³
镉	ND	7.6x10 ⁻⁴	9.8x10 ⁻⁴
铁	0.40	0.146	0.101
总硬度(以CaCO3计)	722	41.2	39.8
六价铬	< 0.004	ND	ND
砷	1.7x10 ⁻²	1.69x10 ⁻²	2.56x10 ⁻²
亚硝酸盐	< 0.003	ND	ND
硝酸盐	1.32	2.66	1.70
氰化物	0.003	ND	ND
耗氧量	1.17	1.06	1.33
溶解性总固体	843	79	81
阴离子活性剂	0.177	ND	ND
钾	0.92	3.08	2.98
钠	3.14	7.27	6.82
钙	273.2	14.5	14.1
镁	22.1	1.16	1.12
碳酸盐	ND	ND	ND
重碳酸盐	47.2	46.1	60.2
挥发酚	0.0012	ND	ND
氨氮	0.038	1.59	ND
镍	ND	2.80x10 ⁻³	3.61x10 ⁻³
备注: ND 表示结果未检出或低于	于检出限 。		

表 5.4-4 地下水水位监测结果

监测点 位	D1	D2	D3	D4	D5	D6		
采样日 期	2022.02.28		2021.11.21					
地下水 位(m)	0.8	1.29	1.83	1.54	1.77	1.48		
井深 (m)	8	/	/	/	/	/		

由评价结果可知,项目所在区域地下水环境质量整体满足《地下水质量标准》(GB/Tl4848-2017) V类要求,地下水环境质量良好。

5.5土壤环境现状调查与评价

5.5.1 评价范围

根据本项目的特点及《环境影响评价技术导则—土壤环境(试行)》(HJ964-2018)的要求,监测评价范围为占地范围内全部,占地范围外 200m 范围内。

5.5.2 监测布点

监测点的布设主要遵循《环境影响评价技术导则—土壤环境(试行)》(HJ964-2018)的要求。根据以上原则项目需按如下方法进行布点。

评价工	作等级	占地范围内	占地范围外			
	生态影响型	3 个表层样点	4 个表层样点			
二级	污染影响型	3 个柱状样点,1个表 层样点	2 个表层样点			
注: "-"表示无现状监测布点类型与数量的要求。						

表 5.5-1 现状监测布点类型与数量(摘要)

表层样应在 0~0.2 m 取样。

柱状样通常在 $0\sim0.5$ m、 $0.5\sim1.5$ m、 $1.5\sim3$ m 分别取样,3 m 以下每 3 m 取 1 个样,可根据基础埋深、土体构型适当调整。

根据项目工程分析及项目基本概况可知,该项目已过了施工期,且项目评价范围内不涉及生态保护区,项目对区域生态环境影响不大。由于项目主要为电镀产品的生产,电镀生产过程中污染物类型较多,故可判定其为污染影响型,由于项目所在地的地面均已进行防渗、硬化处理导致项目占地范围内的部分点位无法采样,现根据实际情况进行布点具体见图 5.5-1,项目共设 6 个土壤监测点,项目现状监测布点及监测指标及引用点位均符合《环境影响评价技术导则 土壤环境(试行)》(HJ964-2018)要求。

		20.5-2 上 次 皿铁师	(坐午) 100 000	
点位名称	取样数量	取样深度	监测项目	用地类型
S1 项目所在地 E113°28'14.01" N22°42'32.05"	3 个	0~0.5m、0.5~1.5m、 1.5~3.0m 各取一个样	石油烃(C ₁₀ -C ₄₀)、铜、镍、镉、铝、锌、pH 值、阳离子交换量、汞、砷、铬(六价)、氰化物、渗滤率、土壤容重、总孔隙度、氧化还原电位、1,1,1,2-四氯乙烷、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、1,1,2-三氯乙烷、1,1,2-三氯乙烷、1,2,3,-三氯丙烷、1,2-二氯丙	建设用地 (第二类 用地)

表 5.5-2 土壤监测布点基本信息一览表

S5 E113°28'5.25" N22°42'37.35"	1个	0~0.2m 取一个样	烷、1,2-二氯乙烷、1,2-二氯苯、1,4- 二氯苯、三氯乙烯、乙苯、二氯甲 烷、反-1,2-二氯乙烯、四氯乙烯、 四氯化碳、氯乙烯、氯仿、氯甲烷、 氯苯、甲苯、苯、苯乙烯、邻二甲 苯、间二甲苯、对二甲苯、顺-1,2- 二氯乙烯、2-氯苯酚、二苯并[a,h] 蒽、硝基苯、苯并[a]芘、苯并[a] 蒽、苯并[b]荧蒽、苯并[k]荧蒽、 菌、苯胺、茚并[1,2,3-cd]芘、萘
S2 E113°28'11.98" N22°42'33.77"	3 个	0~0.5m、0.5~1.5m、 1.5~3.0m 各取一个样	
S3 E113°28'12.21" N22°42'31.30"	3个	0~0.5m、0.5~1.5m、 1.5~3.0m 各取一个样	石油烃(C ₁₀ -C ₄₀)、铜、镍、镉、 铅、锌、pH 值、阳离子交换量、 汞、砷、铬(六价)、氰化物、渗
S4 E113°28'14.01" N22°42'32.05"	1个	0~0.2m 取一个样	滤率、土壤容重、总孔隙度、氧化 还原电位
S6 E113°28'14.73" N22°42'28.51"	1个	0~0.2m 取一个样	

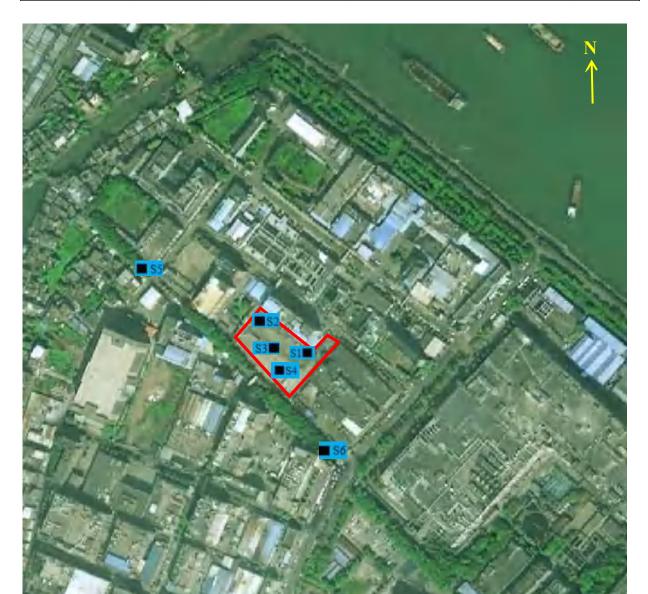


图 5.5-1 土壤、监测点位示意图

5.5.3 监测因子

砷、镉、六价铬、铜、铅、汞、镍、锌、氰化物、四氯化碳、氯仿、氯甲烷、1,1-二氯乙烷、1,2-二氯乙烷、1,1-二氯乙烯、顺-1,2-二氯乙烯、反-1,2-二氯乙烯、二氯甲烷、1,2-二氯丙烷、1,1,1,2-四氯乙烷、1,1,2,2-四氯乙烷、四氯乙烯、1,1,1-三氯乙烷、1,1,2-三氯乙烷、三氯乙烯、1,2,3,-三氯丙烷、氯乙烯、苯、氯苯、1,2-二氯苯、1,4-二氯苯、乙苯、苯乙烯、甲苯、间/对二甲苯、邻二甲苯、硝基苯、苯胺、2-氯苯酚、苯并[a]蒽、苯并[a]芘、苯并[b]荧蒽、苯并[k]荧蒽、菌、二苯并[a,h]蒽、茚并[1,2,3-cd]芘、萘、石油烃(C10-C40)、pH值、阳离子交换量、渗滤率、土壤容重、总孔隙度、氧化还原电位。

5.5.4 监测频次

项目土壤质量现状监测委托广东中鑫检测技术有限公司于2022年2月23日进行为期1天的监测,1次取样。

5.5.5 采样和分析方法

土壤采样方法根据《环境影响评价技术导则—土壤环境(试行)》(HJ964-2018)的要求进行;土壤分析方法主要参照国家环保总局的《环境监测分析方法》和《土壤元素的近代分析方法》中相应的规定进行。

表 5.5-3 土壤检测分析方法与检出限

检测项目	检测方法	使用仪器	检出限或 检测范围
砷	《土壤和沉积物汞、砷、硒、铋、锑的测	 原子荧光光度计	0.01 mg/kg
汞	定微波消解/原子荧光法》 HJ 680-2013	AF-610E	0.002 mg/kg
镉	《土壤质量铅、镉的测定 石墨炉原子吸收分光光度法》 GB/T 17141-1997	原子吸收分光光度计 WFX-130A	0.01 mg/kg
六价铬	《土壤和沉积物六价铬的测定碱溶液提取/ 火焰原子吸收分光光度法》 HJ 1082-2019	原子吸收分光光度计 A3AFG-12	0.5mg/kg
铜	《土壤和沉积物铜、锌、铅、镍、铬的测		1 mg/kg
铅	定火焰原子吸收分光光度法》	原子吸收分光光度计	10 mg/kg
镍	足入相床 1 次収力 九九反仏// HJ 491-2019	A3AFG-12	3 mg/kg
锌	11J 471-2019		1 mg/kg
氰化物	《土壤氰化物和总氰化物的测定分光光度 法》HJ 745-2015	紫外可见分光光度计 T6新世纪	0.01mg/kg

四氯化碳			1.3 μg/kg
氯仿			1.1 μg/kg
氯甲烷			1.0 μg/kg
1,1-二氯乙烷			1.2 μg/kg
1,2-二氯乙烷			1.3 μg/kg
1,1-二氯乙烯			1.0 μg/kg
顺-1,2-二氯			1.3 μg/kg
乙烯			1.5 μg/kg
反-1,2-二氯			1.4 μg/kg
乙烯			1.+ μg/kg
二氯甲烷			1.5 μg/kg
1,2-二氯丙烷			1.1 μg/kg
1,1,1,2-四氯			1.2 μg/kg
乙烷			1.2 µg/Kg
1,1,2,2-四氯			1.2 μg/kg
乙烷	《土壤和沉积物 挥发性有机物的测定 吹	气相色谱质谱联用仪	
四氯乙烯	扫捕集/气相色谱-质谱法》	AMD10	1.4 μg/kg
1,1,1-三氯乙	НЈ 605-2011		1.3 µg/kg
烷			- 18 8
1,1,2-三氯乙			1.2 μg/kg
烷			
三氯乙烯			1.2 μg/kg
1,2,3,-三氯丙			1.2 μg/kg
- 烷			1.0 //
氯乙烯			1.0 μg/kg
苯			1.9 μg/kg
氯苯			1.2 μg/kg
1,2-二氯苯			1.5 μg/kg
1,4-二氯苯			1.5 μg/kg
乙苯			1.2 μg/kg
苯乙烯			1.1 μg/kg
甲苯			1.3 μg/kg
间/对二甲苯			1.2 μg/kg
邻二甲苯			1.2 μg/kg
硝基苯			0.09 mg/kg
苯胺			
2-氯苯酚	《土壤和沉积物 半挥发性有机物的测定	气相色谱质谱联用仪	0.06 mg/kg
苯并[a]蒽	气相色谱-质谱法》	AMD10	0.1mg/kg
苯并[a]芘	HJ 834-2017	11	0.1mg/kg
苯并[b]荧蒽			0.2 mg/kg
苯并[k]荧蒽			0.1 mg/kg
崫			0.1 mg/kg

二苯并[a,h] 蒽			0.1 mg/kg
茚并 [1,2,3-cd]芘			0.1mg/kg
萘			0.09 mg/kg
石油烃 (C ₁₀ -C ₄₀)	《土壤和沉积物石油烃(C ₁₀ -C ₄₀)的测定 气相色谱法》HJ1021-2019	紫外可见分光光度计 T6新世纪	6mg/kg
pH 值	《土壤 pH 的测定 电位法》HJ962-2018	数显酸度计 pHS-3C	0-14
阳离子交换	《土壤 阳离子交换量的测定 三氯化六氨	紫外可见分光光度计	0.01+/1
量	合钴浸提-分光光度法》HJ889-2017	T6 新世纪	0.8cmol ⁺ /kg
氧化还原电	《土壤氧化还原电位的测定电位法》	土壤 ORP 计 TR-901	-2000-2000my
位	НЈ746-2015	上張 OKP // 1K-901	-2000-2000IIIV
渗滤率	《森林土壤渗滤率的测定》LY/T1218-1999	环刀	
土壤容重	《土壤监测 第4部分:土壤容重的测定》	电子天平 MTB1000	
上 塚 台 里	NY/T1121.4-2006	一 1 V 1 MILB1000	
总孔隙度	《森林土壤水分-物理性质的测定》 LY/T1215-1999	电子天平 MTB1000	

5.5.6 评价标准

根据《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB15618-2018)和《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)的筛选值,采用土壤污染物实测值与其评价标准相比较的方法进行评价。

5.5.7 检测结果及分析

土壤环境现状调查照片、检测和评价结果如下:

S1 土壤监测点

S3 土壤监测点

S5 土壤监测点

S2 土壤监测点

S4 土壤监测点

S6 土壤监测点

图 5.5-2 土壤环境质量现状监测

表 5.5-4 土壤环境质量现状检测结果

		检测结果			执行标准		
检测项目	单位	S1			S5	(mg/kg)	达标情况
		0~0.5m	0.5~1.5m	1.0~3.0m	0-0.2m		

2-氯酚(2-氯苯酚) n	mg/kg mg/kg	潮、少量 根系 67	潮、无根系	暗棕色,重 潮、无根系	潮、少量		
2-氯酚(2-氯苯酚) n			糸				
2-氯酚(2-氯苯酚) n		n/	72	06	根系	4500	
	mg/kg		72	96	114	4500	<u> </u>
	/1	<0.06	<0.06	<0.06	<0.06	2256	达标
	mg/kg	<0.1	<0.1	<0.1	<0.1	1.5	达标
	mg/kg	<0.09	<0.09	<0.09	<0.09	76	达标
	mg/kg	<0.1	<0.1	<0.1	<0.1	1.5	达标
	mg/kg	<0.1	<0.1	<0.1	<0.1	15	达标
	mg/kg	<0.2	<0.2	<0.2	<0.2	15	达标
	mg/kg	<0.1	<0.1	<0.1	<0.1	151	达标
	mg/kg	<0.1	<0.1	<0.1	<0.1	1293	达标
苯胺	mg/kg	<0.1	< 0.1	< 0.1	< 0.1	260	达标
茚并[1,2,3-cd]芘 n	mg/kg	< 0.1	<0.1	< 0.1	< 0.1	15	达标
萘n	mg/kg	< 0.09	< 0.09	< 0.09	< 0.09	70	达标
1,1,1,2,-四氯乙烷	µg/kg	<1.2	<1.2	<1.2	<1.2	10	达标
1,1,1-三氯乙烷	µg/kg	<1.3	<1.3	<1.3	<1.3	840	达标
1,1,2,2,-四氯乙烷	µg/kg	<1.2	<1.2	<1.2	<1.2	6.8	达标
1,1,2-三氯乙烷	µg/kg	<1.2	<1.2	<1.2	<1.2	2.8	达标
1,1-二氯乙烯	µg/kg	<1.0	<1.0	<1.0	<1.0	66	达标
1,1-二氯乙烷	µg/kg	<1.2	<1.2	<1.2	<1.2	9	达标
1,2,3-三氯丙烷	µg/kg	<1.2	<1.2	<1.2	<1.2	0.5	达标
1,2-二氯丙烷	µg/kg	<1.1	<1.1	<1.1	<1.1	5	达标
1,2-二氯乙烷	µg/kg	<1.3	<1.3	<1.3	<1.3	5	达标
1,2-二氯苯	µg/kg	<1.5	<1.5	<1.5	<1.5	560	达标
1,4-二氯苯	µg/kg	<1.5	<1.5	<1.5	<1.5	20	达标
三氯乙烯	µg/kg	<1.2	<1.2	<1.2	<1.2	2.8	达标
乙苯	µg/kg	<1.2	<1.2	<1.2	<1.2	28	达标
	µg/kg	<1.5	<1.5	<1.5	<1.5	616	达标
	µg/kg	<1.4	<1.4	<1.4	<1.4	54	达标
四氯乙烯	µg/kg	<1.4	<1.4	<1.4	<1.4	53	达标
	µg/kg	<1.3	<1.3	<1.3	<1.3	2.8	达标
	µg/kg	<1.0	<1.0	<1.0	<1.0	0.43	达标
	µg/kg	<1.1	<1.1	<1.1	<1.1	0.9	达标
	µg/kg	<1.0	<1.0	<1.0	<1.0	37	达标
	µg/kg	<1.2	<1.2	<1.2	<1.2	270	达标
	µg/kg	<1.3	<1.3	<1.3	<1.3	1200	达标
	µg/kg	<1.9	<1.9	<1.9	<1.9	4	达标
	µg/kg	<1.1	<1.1	<1.1	<1.1	1290	达标
	µg/kg	<1.2	<1.2	<1.2	<1.2	640	达标
	µg/kg	<1.2	<1.2	<1.2	<1.2	570	达标
	µg/kg	<1.3	<1.3	<1.3	<1.3	596	达标

汞	mg/kg	1.08	0.09	0.08	0.08	38	达标
砷	mg/kg	8.69	6.76	12.6	5.25	60	达标
铅	mg/kg	45.9	44.1	48.9	50.2	800	达标
铜	mg/kg	19	17	19	19	18000	达标
镉	mg/kg	0.32	0.34	0.33	0.33	65	达标
镍	mg/kg	34	28	32	36	900	达标
六价铬	mg/kg	0.28	0.27	0.26	0.27	5.7	达标
锌	mg/kg	56	46	50	47	250	达标
氰化物	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	135	达标
备注		"<	"表示未检	出或检测结果	以小于方法检	出限。	

表 5.5- 5 土壤环境质量现状检测

					检						
사용하는	34 IZ.		S2			S3		S4	S6		\1. i — i de vi-i
检测项目	单位	0~0.5m	0.5~1.5m	1.5~3.0m	0~0.5m	0.5~1.5m	1.5~3.0m	0-0.2m	0-0.2m	(mg/kg)	达标情况
		浅棕色	暗棕色	暗棕色	暗棕色	暗棕色	暗棕色	浅棕色	浅棕色		
砷	mg/kg	9.47	10.4	10.9	7.92	5.69	7.82	16.0	7.35	60	达标
镉	mg/kg	0.32	0.33	0.31	0.34	0.31	0.35	0.31	0.33	65	达标
六价铬	mg/kg	0.28	0.28	0.26	0.26	0.26	0.24	0.27	0.27	5.7	达标
铜	mg/kg	18	25	22	17	18	18	17	21	18000	达标
铅	mg/kg	43.0	46.4	45.5	43.8	48.3	43.5	45.4	47.8	800	达标
汞	mg/kg	0.04	< 0.002	< 0.002	0.45	0.15	0.13	0.10	0.12	38	达标
镍	mg/kg	30	40	35	28	29	25	33	39	900	达标
锌	mg/kg	44	58	53	51	57	50	42	52	250	达标
氰化物	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	135	达标
石油烃(C10-C40)	mg/kg	68	71	74	67	68	71	56	55	4500	达标
备注				"	<"表示未检	出或检测结果	小于方法检出队	艮 。	•		•

土壤理化性质检测结果

						检测	结果						
检测项目		S 1			S2			S3		S4	S5	S6	单位
	0~0.5m	0.5~1.5m	1.5~3.0m	0~0.5m	0.5~1.5m	1.5~3.0m	0~0.5m	0.5~1.5m	1.5~3.0m	0-0.2m	0-0.2m	0-0.2m	
pH 值	7.22	7.19	7.10	7.21	7.17	7.13	7.23	7.19	7.11	7.19	7.20	7.20	无量纲
阳离子交换量	7.3	7.7	8.0	6.6	7.1	7.5	8.1	7.7	7.9	7.8	8.2	7.7	cmol+/kg
氧化还原电位	213	/	/	346	/	/	298	/	/	416	254	301	mV
渗滤率	2.58	/	/	2.52	/	/	2.55	/	/	2.54	2.55	2.52	mm/min
土壤容重	1.66	/	/	1.63	/	/	1.55	/	/	1.65	1.56	1.67	g/cm3
总孔隙度	44.8	/	/	42.5	/	/	44.0	/	/	45.9	47.0	44.7	%
土壤结构	团粒状	团粒状	团粒状	团粒状	团粒状	团粒状	团粒状	团粒状	团粒状	团粒状	团粒状	团粒状	/
砂砾含量	7	3	2	7	3	1	7	3	2	8	9	10	/
土壤质地	砂壤土	砂壤土	砂壤土	砂壤土	砂壤土	粘土	砂壤土	砂壤土	砂壤土	轻壤土	轻壤土	轻壤土	/
备注													

根据检测结果,项目所在地的土壤检测结果均低于《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018) 筛选值(第二类用地)要求。锌的检测结果均低于《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB15618-2018)筛选值, 总体而言,项目附近土壤环境质量良好

5.6环境噪声现状调查与评价

5.6.1 评价标准

评价标准采用《声环境质量标准 GB3096-2008》中的 2 类标准限值。环境噪声标准适用区域划分执行中山市环境保护局的有关规定。

根据建设项目拟选址地区范围内, 声环境质量执行项目执行 2 类标准。

适用区域	类别	昼间	夜间
疗养区、高级宾馆	0	50	40
居民区、文教区、机关、事业单位集中区	1	55	45
居住、商业与工业混合区、规划商业区	2	60	50
规划工业区、工业集中地带	3	65	55
交通干线道路两侧	4	70	55

表 5.6-1 区域环境噪声标准单位: dB(A)

5.6.2 监测点位

本项目噪声评价工作等级定为二级,根据评价区的环境特征,周围声源情况,根据项目的工程特点,在评价区内布设 5 个点进行声环境监测,主要分布在项目边界外 1 米处和高平村敏感点。

编号	测点名称
1#	项目东南面边界外1米
2#	项目西南面边界外1米
3#	项目西北面边界外1米
4#	项目东北面边界外1米
5#	高平村敏感点

表 5.6-2 声环境质量监测点位

图 5.6-1 噪声监测点位示意图

5.6.3 监测方法

采用积分声级计,按《声环境质量标准》(GB3096-2008)的有关要求进行等效连续 A 声级的监测。选在无雨、风速小于 5.0m/s 的天气进行测量,户外测量时传声器设置户外 1m 处,高度为 $1.2\sim1.5$ m。

5.6.4 监测时间与频次

委托广东中鑫检测技术有限公司于 2022 年 2 月 25 日~26 日进行监测,连续两天,昼间、夜间各测量一次,每次每个测点测量 10min 的等效声级,夜间监测时间选择在 22:00~6:00 之间。

5.6.5 监测结果

声环境质量现状监测结果见下表:

表 5.6-3 声环境质量现状监测结果单位: dB(A)

		检测结果 dB(A)								
采样位置	2022.	02.25	2022.	02.26						
	昼间	夜间	昼间	夜间						
1#东南面边界外1米	57.0	45.4	56.1	46.3						
2#西南面边界外1米	54.3	43.4	53.7	44.1						
3#西北面边界外1米	53.9	44.3	55.5	45.6						
4#东北面边界外1米	56.0	46.0	55.3	47.6						
5#高平村敏感点	55.0	45.3	54.1	46.2						
噪声2类区标准值	≤60	≤50	≤60	≤50						

监测结果表明:各测点昼间和夜间声环境满足《声环境质量标准 GB3096-2008》2 类标准要求。总体来说,该区域声环境质量良好。

6 环境影响预测与评价

6.1施工期的环境影响预测与评价

项目施工期无主体建筑施工工程,待该企业按照相关环保要求进行拆建后,企业将对厂房进行室内装修及设备的安装和调试。项目设备相对简单,安装周期较短,建设方严格遵守有关建筑施工的环境保护条例,加强施工管理,对建筑垃圾及时清运,对周围大气环境影响不大。

6.2运营期大气环境影响预测与评价

6.2.1 气象特征

本评价选取 2021 年作为评价基准年。根据《环境影响评价技术导则—大气环境》 (HJ2.2-2018)规定,环境影响预测模型所需气象、地形、地表参数等基础数据应优先 使用国家发布的标准化数据;因此本次预测评价的气象数据均使用环境保护部环境工程 评估中心国家环境保护部影响评价重点实验室发布的数据。 根据《环境影响评价技术导则—大气环境》(HJ2.2-2018)要求,中山气象站(紫马岭 113°24′E、22°31′N,国家一般气象站)作为地面气象观测资料调查站,该气象站距离本项目约 21.0km,其气象观测数据对于本区域有较好的代表性。

其具体观测气象数据信息详见表 6.2-1。

表 6.2-1 观测气象数据信息

气象	气象		气象站坐	└标(°)	相对厂	海拔	风速仪离		
站名称	站编 号	气象站 等级	经度	纬度	界 距离 (km)	高 度(m)	地高度 (m)	数据 年份	气象 要素
中山	59485	国家基 本气象 站	113°4′E	22°5′N	20.9	35	33.7	202 1 年	风风总量云干温等

评价区域周围 50 km 范围内没有高空气象探测站,故采用中尺度气象模式 WRF 模式模拟的高空格点气象资料。本报告调查的 WRF 模式模拟的高空格点资料,格点经纬度为(113.4E,22.5N),与本项目的距离约为 20.9km。调查 2021 年连续一年每日两次(00 时和 12 时(世界时),对应北京时的 08 时和 20 时)距离地面 5000 m 高度以下的高空气象资料,高空气象数据层数为 23 层。调查项目包括:气压、高度、干球温度、露点温度、风向、风速。本报告采用 AERMOD 模型处理地面和高空气象数据,计算产生模型所需要的参数。

表 6.2-2 模拟气象信息

				7. 12-1A-6.	
模拟点	坐标/m	相对距离/km	数据年	模拟气象要素	模拟方
经度 E	纬度 N		份	(大)的《家女系	式
4336	-21070	21.0	2021年	大气压、距地面高度、干球温 度、露点温度、风向、风速	WRF 模 拟

6.2.1.1 近 20 年气象资料统计

中山市近 20 年 (2002-2021 年) 主要气候统计结果见表 6.2-3。

表 6.2-3 中山气象站 2002-2021 年的主要气候资料统计表

项目	数值
年平均风速(m/s)	1.9
最大风速(m/s)及出现的时间	16.4 相应风向: E 出现时间: 2018 年 9 月 16 日

年平均气温 (℃)	23.1
极端最高气温(℃)及出现的时间	38.7 出现时间: 2005 年 7 月 18、19 日
极端最低气温(℃)及出现的时间	1.9 出现时间: 2016 年 1 月 24 日
年平均相对湿度(%)	76.5
年均降水量(mm)	1918.4
年最大降水量(mm)及出现的时间	2888.2mm 出现时间 : 2016 年
年最小降水量(mm)及出现的时间	1378.6mm 出现时间: 2020 年
年平均日照时数 (h)	1796.9
近五年(2016-2021年)平均风速(m/s)	1.8

(1) 气温

中山市 2002-2021 年平均气温 23.1°C, 极端最高气温 38.7°C, 出现在 2005 年 7 月 18 日和 2005 年 7 月 19 日; 极端最低温 1.9°C, 出现在 2016 年 1 月 24 日。中山市年平均气温的变化范围在 14.6~29.1°C之间; 其中七月平均气温最高,为 29.1°C; 一月平均 气温最低,为 14.6°C。

表 6.2-4 中山市 2002-2021 年各月平均气温 (℃)

月份	1月	2 月	3 月	4月	5 月	6月	7月	8月	9月	10 月	11 月	12 月
气温 (℃)	14.6	16.4	19.1	23.2	26.5	28.3	29.1	28.8	27.9	25.2	20.9	16.1

(2) 降水

中山地区降水具有雨量多、强度大、年际变化大、年内分配不均匀等特点。2002~2021年的平均年降水量为 1918.44mm, 年雨量最大为 2888.2mm(2016年),最小为 1378.6mm(2020年)。

(3) 相对湿度、日照

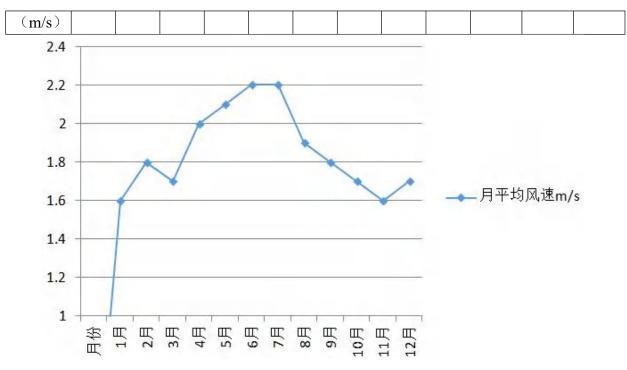
中山市 2002~2021 年平均相对湿度为 76.45%。中山市全年日照充足,中山市 2002~2021 年平均日照时数为 1796.9 小时。

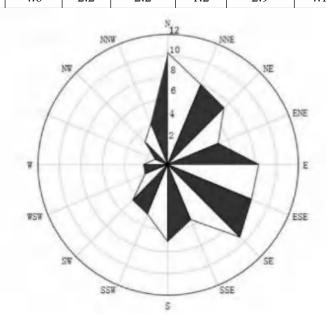
(4) 风速

中山市 2002~2021 年平均风速为 1.9m/s,近五年(2017~2021 年)的平均风速为 1.80m/s。表 6.2-5 为 2002~2021 年各月份平均风速统计表。。

表 6.2-5 中山市 2002-2021 年各月平均风速 (m/s)

月份	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12 月
风速	1.6	1.8	1.7	2.0	2.1	2.2	2.2	1.9	1.8	1.7	1.6	1.7




图 6.2-1 中山市 2002-2021 年逐月平均风速变化曲线

(5) 风向及风频

根据 2002-2021 年风向资料统计,中山地区近 20 年风频最高的风向为 N 风,频率为 10.3%。

风向 NNE NE **ENE ESE** SSE N Е SE S 风频(%) 10.3 7.9 7.4 5.0 8.4 8.4 9.4 5.5 7.1 最多 风向 SSWSWWSW W WNW NWNNW \mathbf{C} 风向 风频 (%) 4.9 2.2 2.2 1.2 2.9 4.1 8.4 N 4.6

表 6.2-6 中山市 2002-2021 年各风向频率(%)

图 6.2-3 中山市 2002-2021 年风向玫瑰图

6.2.1.2 地面气象观察资料调查

(1) 平均温度的月变化

根据中山气象站(2021-1-1 到 2021-12-31)的气象观测,得到该地区近一年平均气温的月变化,见下表 6.2-7。由表可知,中山 2021 年全年平均温度介于 14.96° C~29.49°C,月平均温度在 7 月份最高为 29.49°C,全年平均温度为 23.96°C。

表 6.2-7 中山市 2021 年平均温度的月变化(单位: ℃)

月份	1月	2月	3 月	4月	5月	6月	7月	8月	9月	10 月	11 月	12 月
温度	14.96	19.27	21.81	24.18	29.04	28.61	29.49	28.59	29.28	24.38	20.74	16.92

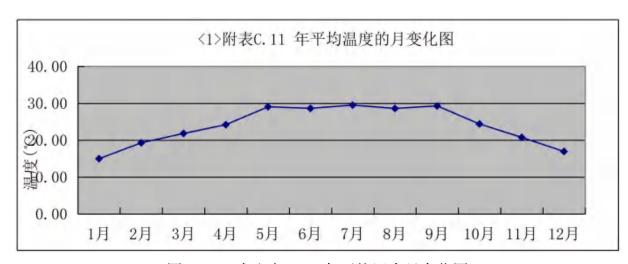


图 6.2-4 中山市 2021 年平均温度月变化图

(2) 平均风速的月变化

根据中山气象站(2021-1-1 到 2021-12-31)的气象观测,得到该地区近一年平均风速的月变化,见下表。

表 6.2-8 中山市 2021 年年平均风速的月变化(单位: m/s)

日八	1 🖽	1 □	2 日	1 □	₽ □	∠ ⊟	7 日	8月	οH	10	11	12
月饭	1 月	2月	3月	4 月	3月	0月	/ 月	8月	9月	月	月	月
风速	1.71	1.62	1.70	1.67	2.08	1.88	1.77	1.55	1.47	1.96	1.68	1.65

图 6.2-5 中山市 2021 年平均风速的月变化图

中山 2021 年风速最大的月份为 5 月(2.08m/s), 2021 年全年平均风速为 1.73m/s。

(3) 各季小时平均风速的日变化

根据中山气象站(2021-1-1 到 2021-12-31)的气象观测,得到该地区近一年各季小时平均风速的日变化,见下表。

时间	1时	2 时	3 时	4 时	5时	6时	7时	8时	9时	10 时	11 时	12 时
春季	1.34	1.39	1.34	1.31	1.36	1.30	1.41	1.66	1.91	2.08	2.21	2.37
夏季	1.40	1.31	1.28	1.25	1.25	1.22	1.22	1.49	1.74	1.85	2.09	2.24
秋季	1.36	1.34	1.37	1.35	1.41	1.40	1.40	1.44	1.86	2.13	2.22	2.37
冬季	1.37	1.39	1.44	1.48	1.44	1.41	1.41	1.36	1.58	1.91	2.11	2.14
n 1. 2-1		_										
时间	13 时	14 时	15 时	16 时	17时	18 时	19 时	20 时	21 时	22 时	23 时	24 时
春季	13 时 2.45	14 时 2.55	15 时 2.55	2.36	17 时 2.21	2.15	19 时 1.97	20 时 1.75	21 时 1.63	22 时 1.58	23 时 1.44	24 时 1.41
	·	,	•	·	·	·	•				·	
春季	2.45	2.55	2.55	2.36	2.21	2.15	1.97	1.75	1.63	1.58	1.44	1.41

表 6.2-9 中山市 2021 年年各季小时平均风速的日变化

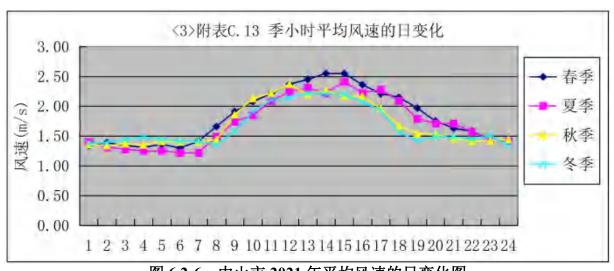


图 6.2-6 中山市 2021 年平均风速的日变化图

从表可以看出,在春季,中山小时平均风速在14和时15时达到最大,为2.55m/s;在夏季,中山小时平均风速在15时达到最大,为2.41m/s;在秋季,中山小时平均风速在12时达到最大,为2.37m/s;在冬季,中山小时平均风速在14时达到最大,为2.21m/s。

(4) 平均风频的月变化、季变化及年均风频

根据中山气象站(2021-1-1 到 2021-12-31)的气象观测,得到该地区 2021 年平均风频的月变化,见表 6.2-10,平均风频的季变化、年均风频见表 6.2-11。

表 6.2-10 中山市 2021 年平均风频的月变化

风频(%)	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	C
一月	19.62	17.20	7.39	5.11	9.41	10.89	13.84	2.02	2.02	1.21	0.54	0.54	0.94	1.48	2.69	4.70	0.40
二月	8.48	6.70	3.57	6.25	17.11	16.07	18.15	5.51	5.51	2.08	1.34	1.04	0.60	1.19	2.53	3.27	0.60
三月	10.08	7.80	2.55	4.70	18.28	11.29	10.35	5.11	13.58	5.11	3.49	0.13	1.34	0.40	0.54	3.90	1.34
四月	8.19	3.19	3.19	4.58	18.61	14.03	15.69	6.94	10.56	3.61	2.78	2.50	0.97	0.97	1.39	2.50	0.28
五月	1.61	1.48	0.27	2.55	4.57	6.32	4.17	8.87	27.96	25.54	10.48	2.69	1.75	0.54	0.40	0.67	0.13
六月	1.67	1.39	1.81	3.75	13.75	8.75	7.08	6.53	16.94	22.22	6.81	2.64	1.67	0.83	1.11	2.50	0.56
七月	2.15	1.48	1.08	6.18	15.86	11.83	10.08	7.93	12.90	7.80	7.93	5.38	4.97	1.61	0.94	1.34	0.54
八月	1.61	2.02	1.61	2.96	9.81	8.33	10.22	7.26	14.92	11.83	9.95	9.81	4.57	1.75	1.08	1.48	0.81
九月	2.22	2.08	1.94	6.39	16.11	16.39	15.28	7.22	6.94	5.97	5.14	5.00	5.56	0.69	1.53	1.11	0.42
十月	24.87	13.04	7.53	10.35	16.26	7.39	7.26	3.63	1.48	0.67	0.00	0.94	0.81	0.27	1.08	3.76	0.67
十一月	26.53	17.78	5.83	4.58	8.33	9.03	13.75	2.64	2.92	1.39	0.14	0.28	0.97	0.56	0.97	3.47	0.83
十二月	30.24	18.95	7.12	4.57	5.24	6.45	10.08	1.48	0.94	0.27	0.54	0.13	0.27	1.48	4.17	7.26	0.81

表 6.2-11 中山市 2021 年平均风频的季变化及年均风频

风频(%)	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	С
春季	6.61	4.17	1.99	3.94	13.77	10.51	10.01	6.97	17.44	11.50	5.62	1.77	1.36	0.63	0.77	2.36	0.59
夏季	1.81	1.63	1.49	4.30	13.13	9.65	9.15	7.25	14.90	13.86	8.24	5.98	3.76	1.40	1.04	1.77	0.63
秋季	17.95	10.99	5.13	7.14	13.60	10.90	12.04	4.49	3.75	2.66	1.74	2.06	2.43	0.50	1.19	2.79	0.64
冬季	19.81	14.54	6.11	5.28	10.37	10.97	13.89	2.92	2.73	1.16	0.79	0.56	0.60	1.39	3.15	5.14	0.60
全年	11.48	7.79	3.66	5.16	12.73	10.50	11.26	5.42	9.76	7.34	4.12	2.60	2.04	0.98	1.53	3.00	0.62

气象统计1风频玫瑰图 一月,静风0.40% 二月,静风0.60% 三月,静风1.34% 四月,静风0.28% 五月,静风0.13% 六月,静风0.56% 七月,静风0.54% 八月,静风0.81% 九月,静风0.42% 十月,静风0.67% 十一月,静风0.83% 十二月,静风0.81% 全年,静风0.62% 春季,静风0.59% 夏季,静风0.63% 秋季,静风0.64% 图例(%) 冬季,静风0.60%

图 6.2-7 中山市 2021 年气象统计风频玫瑰图

气象统计1风速玫瑰图 一月,平均1.71m/s 二月,平均1.62m/s 三月,平均1.70m/s 四月,平均1.67m/s 五月,平均2.08m/s 六月,平均1.88m/s 七月,平均1.77m/s 八月,平均1.55m/s 九月,平均1.47m/s 十月,平均1.96m/s 十一月,平均1.68m/s 十二月,平均1.65m/s 全年,平均1.73m/s 春季,平均1.82m/s 夏季,平均1.73m/s 秋季,平均1.70m/s 冬季,平均1.66m/s 图例(m/s)

图 6.2-8 中山市 2021 年气象统计风速玫瑰图

(5) 风的小时变化

1) 各时刻各风向频率

根据中山气象站 2021 年的气象观测,得到该地区 2021 年各时刻各风向频率,见表 6.2-14。

2) 各时刻各风向风速

根据中山气象站 2021 年的气象观测,得到该地区 2021 年各时刻各风向风速,见表 6.2-15。

3) 各时刻稳定度频率

根据中山气象站 2021 年的气象观测,得到该地区 2021 年各时刻稳定度频率,见表 6.2-16。由该表可知,中山各时刻以中性稳定度(D)为主,其频率在 27.4-44.93%之间, C-D 和 D-E 稳定度频率最低。

(6) 各时刻各风向污染系数

根据中山气象站 2021 年的气象观测,得到该地区 2021 年各时刻各风向污染系数,见表 6.2-17。由该表可知,SE风向下污染系数较高,最大为 9.03;其次为 ESE风向的污染系数,最大为 7.04;最小为 WNW 风向,最小污染系数为 0.71。

(7) 稳定度时的平均混合层高度

根据中山气象站 2021 年的气象观测,得到该地区 2021 年各稳定度时的平均混合层高度,见表 6.2-12。

表 6.2-12 中山市 2021 年各稳定度时的平均混合层高度(m)

稳定度	A	В	В-С	С	C-D	D	D-E	Е	F
平均 hf	1930	1973	3180	1983	2746	623		286	104

(8) 各稳定度时的平均风速

根据中山气象站 2021 年的气象观测,得到该地区 2021 年各稳定度时的平均风速,见表 6.2-13。由该表可知,C-D 稳定度下平均风速最大,为 5.15m/s;其次为 B-C 稳定度,平均风速为 3.54 m/s;最小为 F 稳定度,平均风速为 1.31 m/s。

表 6.2-13 中山市 2021 年各稳定度时的平均风速(m/s)

稳定度	A	В	В-С	С	C-D	D	D-E	Е	F
平均U	1.49	1.85	3.54	2.72	5.15	1.84	/	1.78	1.31

表 6.2-14 中山市 2021 年各时刻各风向频率(%)

hr\W	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	静风
0:00	7.67	5.48	3.84	3.84	12.33	12.6	16.16	8.77	10.14	7.12	4.66	1.92	1.92	1.1	0.82	0.82	0.82
1:00	9.86	6.58	1.37	3.29	12.88	12.6	14.52	7.12	10.14	8.77	3.01	3.01	1.37	1.37	1.1	1.1	1.92
2:00	9.59	5.48	4.38	4.93	13.42	11.23	13.7	7.4	7.4	6.58	4.38	3.56	1.37	0.55	1.37	2.47	2.19
3:00	10.14	6.03	2.74	4.38	13.7	12.6	14.52	6.03	7.67	6.3	4.93	3.84	0.82	0.55	1.92	2.19	1.64
4:00	9.32	7.67	4.38	6.85	13.42	13.42	12.05	6.03	7.67	4.11	4.66	3.01	1.64	0.82	1.64	2.47	0.82
5:00	9.32	8.22	2.47	6.3	12.88	11.51	16.44	7.12	7.95	5.75	1.92	1.64	1.64	0.82	2.19	3.29	0.55
6:00	11.78	9.86	3.56	7.12	12.05	14.25	14.79	4.66	6.85	2.47	3.29	1.92	2.47	0.27	0.82	2.19	1.64
7:00	11.78	9.04	3.01	5.48	14.79	10.14	17.53	5.48	6.85	3.01	4.11	2.19	0.55	1.1	1.1	3.29	0.55
8:00	14.52	7.4	5.75	5.75	12.88	9.86	10.68	2.74	9.59	5.21	4.38	3.56	2.19	1.37	0.55	2.47	1.1
9:00	13.97	10.68	4.93	8.49	15.34	7.12	3.56	3.56	6.3	7.4	4.66	4.38	4.93	1.37	1.1	2.19	0
10:00	10.68	14.25	9.04	8.77	12.05	6.3	2.47	2.74	7.12	7.12	3.01	4.38	4.66	1.1	2.74	3.56	0
11:00	16.44	7.95	5.48	9.32	14.25	7.12	2.47	3.29	6.03	5.21	7.67	3.01	4.38	1.92	1.92	3.56	0
12:00	13.15	7.95	7.67	7.67	13.15	10.41	3.29	2.74	6.03	6.58	3.84	3.56	4.38	1.1	2.47	6.03	0
13:00	17.81	7.95	3.01	4.38	15.34	8.77	4.11	3.29	7.12	7.4	5.48	1.92	4.38	1.92	2.19	4.93	0
14:00	16.44	7.12	3.56	5.48	16.44	6.3	7.12	2.47	6.3	7.95	5.75	2.74	2.47	2.47	1.64	5.75	0
15:00	13.42	8.22	3.29	6.85	16.16	10.96	3.84	5.21	8.49	7.67	3.56	2.47	1.64	0.82	1.64	5.75	0
16:00	14.25	11.78	2.47	2.47	17.53	8.22	7.67	3.29	12.88	8.49	2.47	1.37	1.37	0.55	1.64	3.56	0
17:00	15.34	8.77	1.37	3.84	10.14	12.05	6.85	4.66	13.7	9.32	3.29	2.19	1.64	0.27	2.19	4.38	0
18:00	13.15	6.58	2.74	3.01	12.05	8.49	9.86	6.03	13.15	11.23	2.19	1.64	2.47	0.82	1.37	4.93	0.27

19:00	10.14	7.12	2.19	3.56	7.67	10.41	15.62	5.75	15.62	11.23	4.38	0.55	0.55	1.1	1.1	2.74	0.27
20:00	6.58	5.21	2.19	3.56	8.49	10.41	16.44	8.49	19.18	8.22	4.38	1.64	0.55	1.64	1.1	1.37	0.55
21:00	7.12	4.66	3.29	2.74	8.49	12.33	19.18	9.04	13.97	10.14	3.56	1.1	0.82	0	1.64	1.37	0.55
22:00	5.75	6.58	3.01	3.01	10.41	10.68	18.9	7.4	13.97	9.59	4.38	3.01	0.27	0	1.92	0.55	0.55
23:00	7.4	6.3	2.19	2.74	9.59	14.25	18.36	6.85	10.14	9.32	4.93	3.84	0.55	0.55	0.55	1.1	1.37

表 6.2-15 中山市 2021 年各时刻各风向风速 (m/s)

						0.2-13	_ ' _ '	13 2021	, , ,	NA TIES	1 77 100	(111/3/					
hr\W	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	平均
0:00	1.88	1.91	1.42	1.46	1.5	1.35	1.1	1.03	1.5	1.54	1.49	1.43	1.31	1.15	1.77	0.93	1.4
1:00	1.67	1.71	1.64	1.14	1.6	1.32	1.1	0.95	1.32	1.7	1.17	1.59	1	1.34	0.93	2.08	1.37
2:00	1.92	1.66	1.19	1.08	1.6	1.3	1.11	0.96	1.28	1.62	1.35	1.58	1.1	0.85	1.24	1.59	1.36
3:00	1.93	1.76	1.15	1.34	1.61	1.13	1.09	0.97	1.16	1.45	1.29	1.38	1.37	0.75	1.87	1.78	1.36
4:00	1.7	1.86	1.16	1.53	1.46	1.01	1.07	1.03	1.47	1.52	1.18	1.25	0.65	1.13	1.55	2.22	1.35
5:00	1.79	1.79	1.28	1.43	1.57	1.23	1.05	0.99	1.13	1.54	1.7	1.58	0.67	1.2	1	1.87	1.36
6:00	1.86	1.66	1.12	1.28	1.39	1.19	1.09	1.08	1.3	1.42	1.28	1.43	1.19	1.3	1.43	1.49	1.33
7:00	1.77	1.54	1.72	1.31	1.56	1.07	1.05	0.93	1.24	1.78	1.37	1.24	0.8	1.73	1.4	1.55	1.36
8:00	1.75	1.84	1.51	1.5	1.64	1.23	1.01	1.35	1.4	1.87	1.86	1.44	1.39	1.44	0.7	1.22	1.49
9:00	2.16	1.76	1.63	1.66	1.71	1.73	1.12	1.13	1.96	2.34	2.05	1.54	1.36	1.44	0.93	1.76	1.77
10:00	2.25	1.88	1.83	1.93	2.21	2.1	1.4	1.12	1.95	2.53	2.51	1.89	1.66	1.63	1.49	2.02	1.99
11:00	2.15	2.26	2.13	2.04	2.2	2.48	2.01	1.58	2.14	2.42	2.47	2.27	1.81	1.76	1.3	2.17	2.16
12:00	2.41	2.37	1.93	2.06	2.41	2.27	2.05	2.07	2.32	2.84	3.01	2.45	1.89	2	1.78	1.9	2.28
13:00	2.48	2.07	2.15	2.18	2.19	2.25	2.35	1.82	2.53	2.82	2.72	2.57	2.08	1.7	1.85	1.78	2.3
14:00	2.37	2.09	1.73	2.14	2.43	2.39	2.08	2.09	2.31	3.01	2.73	2.26	2.07	1.86	1.75	2.06	2.31
15:00	2.43	2.26	1.8	2.02	2.47	2.31	2.42	1.82	2.58	3.06	3.09	1.99	1.85	1.47	1.7	1.75	2.33
16:00	2.12	1.87	1.74	1.88	2.39	2.37	2.07	1.64	2.39	3.1	1.86	2.66	1.22	2	1.4	1.75	2.2
17:00	1.92	1.78	1.22	1.5	2.4	2.19	1.92	1.78	2.49	2.66	2.55	2.16	1.38	0.9	1.9	1.47	2.1
18:00	1.71	1.6	0.96	1.36	1.82	1.69	1.91	1.6	2.21	2.83	2.15	2.47	1.24	0.9	1.74	1.34	1.87

19:00	1.91	1.44	1.08	1.36	1.8	1.38	1.55	1.49	1.9	2.24	1.68	1.55	1.15	1.1	1.25	1.44	1.68
20:00	2.36	1.86	1.61	1.48	1.55	1.76	1.31	1.27	1.63	2.23	1.47	1.73	1.55	1.32	0.95	1.02	1.62
21:00	2.07	1.95	1.38	1.82	1.72	1.49	1.29	1.28	1.66	1.95	1.35	1.13	0.83	0	1.95	1.14	1.57
22:00	2.11	1.74	1.17	1.92	1.7	1.46	1.29	1.13	1.47	1.87	1.35	1.1	1.3	0	1.3	1.3	1.5
23:00	1.67	1.91	1.34	2.2	1.67	1.51	1.14	1.03	1.45	1.74	1.33	1.39	0.6	1.25	0.9	1.65	1.45

表 6.2-16 中山市 2021 年各时刻稳定度频率 (%)

hr\PS	A	В	В-С	С	C-D	D	D-E	Е	F
0:00	0	0	0	0	0	30.14	0	1.37	68.49
1:00	0	0	0	0	0	29.86	0	2.19	67.95
2:00	0	0	0	0	0	30.41	0	1.64	67.95
3:00	0	0	0	0	0	30.68	0	1.1	68.22
4:00	0	0	0	0	0	29.32	0	2.19	68.49
5:00	0	0	0	0	0	29.59	0	1.37	69.04
6:00	0	0	0	0	0	30.14	0	16.71	53.15
7:00	0	10.14	0	0.27	0	30.41	0	45.75	13.42
8:00	0	36.99	0	13.15	0	27.4	0	22.47	0
9:00	0	52.33	3.01	11.51	0	33.15	0	0	0
10:00	0	51.23	4.93	5.21	0.27	38.36	0	0	0
11:00	8.49	44.66	5.48	7.67	0	33.7	0	0	0
12:00	6.85	46.03	3.29	9.86	0	33.97	0	0	0
13:00	8.49	44.38	3.56	6.85	0	36.71	0	0	0

14:00	3.29	42.47	7.67	5.75	0.27	40.55	0	0	0
15:00	0	34.25	11.23	9.59	0	44.93	0	0	0
16:00	0	33.42	4.93	22.19	0	39.45	0	0	0
17:00	0	14.52	0	23.01	0	35.89	0	26.58	0
18:00	0	0	0	0	0	41.92	0	35.34	22.74
19:00	0	0	0	0	0	35.07	0	12.05	52.88
20:00	0	0	0	0	0	32.33	0	4.38	63.29
21:00	0	0	0	0	0	32.88	0	2.74	64.38
22:00	0	0	0	0	0	31.78	0	1.37	66.85
23:00	0	0	0	0	0	30.68	0	1.92	67.4

表 6.2-17 中山市 2021 年各时刻各风向污染系数

										77 H / (1)	4147147	* ****					
hr\W	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	平均
0:00	4.09	2.88	2.7	2.63	8.23	9.31	14.65	8.48	6.76	4.62	3.12	1.34	1.46	0.95	0.47	0.88	4.54
1:00	5.9	3.84	0.84	2.88	8.05	9.52	13.22	7.47	7.67	5.16	2.57	1.89	1.37	1.02	1.18	0.53	4.57
2:00	4.99	3.3	3.69	4.58	8.4	8.66	12.34	7.68	5.79	4.06	3.25	2.26	1.25	0.64	1.1	1.55	4.6
3:00	5.26	3.42	2.38	3.28	8.5	11.15	13.34	6.23	6.61	4.34	3.83	2.78	0.6	0.73	1.02	1.23	4.67
4:00	5.49	4.11	3.79	4.48	9.21	13.24	11.24	5.87	5.23	2.7	3.96	2.42	2.53	0.73	1.06	1.11	4.82
5:00	5.22	4.59	1.93	4.39	8.2	9.37	15.61	7.21	7.05	3.73	1.13	1.04	2.47	0.68	2.19	1.76	4.79
6:00	6.34	5.94	3.19	5.58	8.68	11.99	13.61	4.33	5.27	1.73	2.56	1.34	2.07	0.21	0.57	1.47	4.68
7:00	6.65	5.86	1.75	4.18	9.5	9.47	16.77	5.89	5.51	1.69	2.99	1.77	0.68	0.64	0.78	2.12	4.77
8:00	8.28	4.03	3.81	3.84	7.87	8	10.55	2.03	6.84	2.79	2.36	2.48	1.58	0.95	0.78	2.02	4.26
9:00	6.47	6.06	3.02	5.12	8.99	4.11	3.17	3.15	3.21	3.16	2.27	2.84	3.64	0.95	1.18	1.24	3.66
10:00	4.76	7.56	4.95	4.55	5.45	3.01	1.76	2.45	3.65	2.81	1.2	2.31	2.81	0.67	1.84	1.77	3.22
11:00	7.63	3.52	2.58	4.57	6.49	2.87	1.23	2.09	2.82	2.15	3.1	1.33	2.43	1.09	1.48	1.64	2.94
12:00	5.46	3.36	3.97	3.72	5.45	4.59	1.6	1.32	2.6	2.31	1.28	1.46	2.32	0.55	1.39	3.16	2.78
13:00	7.19	3.85	1.4	2.01	6.99	3.89	1.75	1.81	2.81	2.62	2.02	0.75	2.11	1.13	1.18	2.77	2.77
14:00	6.93	3.41	2.06	2.57	6.77	2.64	3.43	1.18	2.72	2.64	2.1	1.21	1.19	1.33	0.94	2.8	2.75
15:00	5.52	3.63	1.83	3.39	6.55	4.74	1.58	2.87	3.29	2.51	1.15	1.24	0.89	0.56	0.97	3.28	2.75
16:00	6.72	6.29	1.41	1.31	7.33	3.47	3.71	2	5.4	2.74	1.33	0.51	1.12	0.27	1.17	2.03	2.93
17:00	7.99	4.92	1.12	2.56	4.23	5.5	3.57	2.61	5.51	3.5	1.29	1.01	1.19	0.3	1.15	2.98	3.09
18:00	7.71	4.1	2.85	2.21	6.64	5.02	5.18	3.78	5.96	3.96	1.02	0.67	1.98	0.91	0.79	3.67	3.53

19:00	5.31	4.95	2.04	2.62	4.27	7.52	10.06	3.87	8.21	5.01	2.61	0.35	0.48	1	0.88	1.9	3.82
20:00	2.79	2.8	1.36	2.4	5.5	5.91	12.56	6.7	11.77	3.69	2.98	0.95	0.35	1.25	1.15	1.34	3.97
21:00	3.44	2.38	2.39	1.51	4.94	8.26	14.9	7.09	8.41	5.19	2.65	0.97	0.99	0	0.84	1.2	4.07
22:00	2.73	3.78	2.57	1.57	6.13	7.34	14.64	6.55	9.5	5.13	3.25	2.74	0.21	0	1.48	0.42	4.25
23:00	4.42	3.3	1.64	1.25	5.74	9.43	16.16	6.64	6.97	5.36	3.7	2.75	0.91	0.44	0.61	0.66	4.37

6.2.2 大气环境影响预测

6.2.2.1 预测模式及其参数

(1) 预测模式

根据《环境影响评价技术导则 大气环境》(HJ2.2-2018),一级评价项目应进行进一步预测工作。本项目评价采用导则推荐的进一步预测模式采用 AERMOD,预测项目建成后对大气环境的影响程度。

预测正常工况下,正常排放和事故排放时,本项目废气对大气环境的影响。

(2) 地表特征参数

根据大气预测范围内的土地利用现状及规划情况,将评价范围分为1个扇区,其中地面特征参数按"城市"的地表类型及"潮湿气候'的地表湿度类型进行选取,本次大气预测地面特征参数见下表 6.2-18。

序号	扇区	时段	正午反照率	BOWEN	粗糙度
1	0-230	冬季(12,1,2 月)	0.18	0.5	1
2	0-230	春季(3,4,5 月)	0.14	0.5	1
3	0-230	夏季(6,7,8 月)	0.16	1	1
4	0-230	秋季(9,10,11 月)	0.18	1	1
5	230-360	冬季(12,1,2 月)	0.14	0.3	0.0001
6	230-360	春季(3,4,5 月)	0.12	0.1	0.0001
7	230-360	夏季(6,7,8 月)	0.1	0.1	0.0001
8	230-360	秋季(9,10,11月)	0.14	0.1	0.0001

表 6.2-18 AERMOD 地面特征参数

注:本报告将项目所在区域地表分为两个扇区:0°~230°扇形区域为城市;230°~360°扇形区域为水面(洪奇沥水道)。

(4) 其他相关参数选项

本评价其他相关大气预测相关参数的选取情况见下表。

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 	
参数	设置
地形高程	考虑地形高程影响
预测点离地高	不考虑 (预测点在地面上)
烟囱出口下洗	否
计算总沉积	不计算
计算干沉积	不计算
计算湿沉积	不计算
使用 AERMOD 的 BETA 选项	否

表 6.2-19 其他相关参数选取

考虑建筑物下洗	否
考虑城市效应	否
考虑 NO ₂ 化学反应	否
考虑全部源速度优化	是
考虑扩散过程的衰减	否
考虑浓度的背景值叠加	是
气象起止日期	2021-1-1 至 2021-12-31
计算网格间距	50m

6.2.2.2 预测周期

选取评价基准年(2021年)作为预测周期,预测时段取连续1年。 预测范围及计算点

(1) 预测范围

本项目的预测范围以项目中心为中心点(0,0),以正东方向为 X 轴正方向,正北方为 Y 轴正方向,网格点间距为 50m,建立本次大气预测坐标系统。

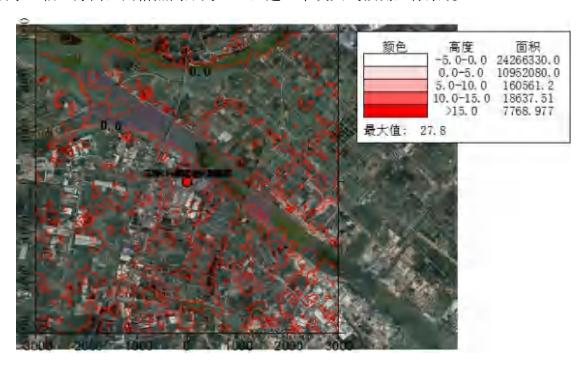


图 6.2-10 项目评价范围内的地形示意图

(2) 计算点

本项目选择区域最大地面浓度点作为计算点,区域最大地面浓度点的预测网格采用网格等间距法布设,在[-3000,3000]范围内网格间距取 50m。以项目中心点作为原点,使用两点距离法确定坐标系,各评价关注点坐标值见下表。

表 6.2-22 大气环境评价范围内环境保护目标坐标及高程一览表

序号	名称	X	Y	地面高程
1	上赖生	-888	90	-1.19
2	蔡份	-814	-388	0.02
3	高平村	-258	-4	-0.69
4	下赖生	-562	-364	0.07
5	新二村	-764	-1153	1.57
6	顷九	364	-479	1.05
7	福隆围	-209	-1966	-2.83
8	掘尾	735	-1674	-2.82
9	新团结村	1393	-1643	-0.69
10	头围	1679	-1898	0.5
11	团结村	1462	-2346	-1.71
12	新洋村	-1396	-2215	-0.57
13	冯马村	197	1117	2.26
14	新兴村	-930	2865	-1.8
15	高平小学	-479	-1029	0.95
16	冯马小学	1856	956	-1.87
17	横沥中学	455	2464	-8

6.2.2.3 污染源强

根据工程分析结果,估算污染源及污染参数见表 6.2-23、表 6.2-24 和表 6.2-25。

表 6.2-23 项目主要废气源强统计表(点源)

		北层符序郊	1由心从長/	排气筒								
编号	名称	拼气同成部 X	了中心坐标/m Y	括 底部海 拔高度 /m	排气筒高度 /m	排气筒 出口内 径/m	烟气流 速/ (m/s)	烟气温 度/℃	年排放 小时数 /h	排放工 况	污染物	排放速 率/ (kg/h)
G1	酸雾废气	-11	-9	-2	50	1.3	12.56	25	4800	正常排	氯化氢	0.017
										放工业出	硫酸雾	0.017
G2	氨气	-7	-12	-2	50	1.3	12.56	25	4800	正常排 放	氨	0.009
G3	酸雾废气	-4	-15	-2	50	1.1	11.69	25	4800	正常排 放	氰化氢	0.020
G4	水转印、电泳、喷漆工序	2	-19	-2	50	0.6	14.74	25	4800	正常排	非甲烷 总烃	0.025
0.	废气	_		_		0.0	1, .	25	1000	放	TVOC	0.025
	//2 \										颗粒物	0.120
G5	酸雾废气	7	-23	-2	50	0.6	14.74	25	4800	正常排 放	铬酸雾	0.0002
CC	松雲 広左	12	-27	-2	50	1.1	11.60	25	4800	正常排	氯化氢	0.004
G6	酸雾废气	12	-27	-2	50	1.1	11.69	25	4800	放	硫酸雾	0.001
0.7	F F		0	2	50	1.0	12.20	2.5	4000	正常排	F	0.004
G7	氨气	7	0	-2	50	1.2	12.28	25	4800	放	氨	0.004
G8	酸雾废气	11	-3	-2	50	1.2	12.28	25	4800	正常排 放	氰化氢	0.018
CO	松雲広 左	12	2	2	50	1.2	12.20	25	4900	正常排	氯化氢	0.012
G9	酸雾废气	12	-3	-2	50	1.2	12.28	25	4800	放	硫酸雾	0.007
G10	氨气	12	-4	-2	50	1.3	12.56	25	4800	正常排	氨	0.002

										放		
	锅炉燃烧废									正常排	二氧化硫	0.036
G11	树炉燃烧及 气	23	-22	-2	50	0.4	4.26	80	2400	放	氮氧化 物	0.054
											颗粒物	0.025

表 6.2-24 项目主要废气源强统计表(面源)

	1						ı	1	
编号	名称	面源起点的	Ł标(m)	│ 一面源海拔喜度/m	面源有效高度/m	年排放	 排放工况	 污染物	污染物排放速
利用 ラ	10/10	X	у	田伽得汉同汉/III	四/赤行 双同/文/Ⅲ	小时数/h	THE TAKE IT TO THE	17米10	率/ (kg/h)
		-43	10					氯化氢	0.009
		19	-38					硫酸雾	0.009
		36	-17					氨	0.005
1	生产车间 2F	30	-1/	-2	8.85	4800	正常排放	铬酸雾	0.00003
1	生厂车间 2F	-25	33	-2	8.83	4800	上 市	氰化氢	0.001
		-23	33					非甲烷总烃	0.02
		-43	10					TVOC	0.02
		-43	10					颗粒物	0.13
		-43	10					氯化氢	0.0004
		19	-38					硫酸雾	0.001
2	生产车间 4F	36	-17	-2	21.75	4800	正常排放		
		-25	33					氰化氢	0.010
		-43	10						
		-43	10					氯化氢	0.001
3	生产车间 5F	19	-38	2	27.8	4800	正常排放	氨	0.002
3	工/ 千四 31	36	-17	-2	27.8	4800	址市개以	女(0.002
		-25	33					氰化氢	0.0035

		-43	10						
		-43	10					氯化氢	0.005
		19	-38					硫酸雾	0.003
4	生产车间 6F	36	-17	-2	33.85	4800	正常排放	氨	0.0005
		-25	33					铬酸雾	0.0001
		-43	10					氰化氢	0.005
		-43	10					硫酸雾	0.002
		19	-38					氨	0.001
5	生产车间 7F	36	-17	-2	39.9	4800	正常排放	氰化氢	0.001
		-25	33					非甲烷总烃	0.002
		-43	10					TVOC	0.002

备注:面源高度取值为窗户高度一半,项目生产车间 1F、2F 楼层高度约为 6.85m, 3F~7F 楼层高度约为 6.05m,窗户中心高度取 2m。

表 6.2-25 本项目非正常排放源强参数表 (点源)

		排气筒底部	中心坐标/m	排气筒		排气筒	烟气流		年排放			排放速
编号	名称	X	Y	底部海 拔高度 /m	排气筒高度 /m	出口内 径/m	速/ (m/s)	烟气温度/℃	小时数 /h	排放工 况	污染物	率/ (kg/h)
G1	酸雾废气	-11	-9	-2	50	1.3	12.56	25	4800	正常排	氯化氢	0.171
U1	取 分 及 、	-11	-9	-2	30	1.5	12.50	23	4000	放	硫酸雾	0.171
G2	氨气	-7	-12	-2	50	1.3	12.56	25	4800	正常排 放	氨	0.087
G3	酸雾废气	-4	-15	-2	50	1.1	11.69	25	4800	正常排 放	氰化氢	0.201
G4	水转印、电 泳、喷漆工序	2	-19	-2	50	0.6	14.74	25	4800	正常排放	非甲烷 总烃	0.245
	废气									/,/	TVOC	0.245

											颗粒物	1.197
G5	酸雾废气	7	-23	-2	50	0.6	14.74	25	4800	正常排 放	铬酸雾	0.002
G6	酸雾废气	12	-27	-2	50	1.1	11.69	25	4800	正常排	氯化氢	0.035
Go	1	12	-27	-2	30	1.1	11.09	23	4600	放	硫酸雾	0.012
G7	氨气	7	0	-2	50	1.2	12.28	25	4800	正常排 放	氨	0.039
G8	酸雾废气	11	-3	-2	50	1.2	12.28	25	4800	正常排 放	氰化氢	0.177
G9	酸雾废气	12	2	2	50	1.2	12.28	25	4800	正常排	氯化氢	0.120
G9	1	12	-3	-2	30	1.2	12.28	23	4000	放	硫酸雾	0.070
G10	氨气	12	-4	-2	50	1.3	12.56	25	4800	正常排 放	氨	0.022

6.2.2.4 与项目有关的拟建、在建污染源

本项目位于中山市三角镇高平化工区,通过大气污染源现状调查发现,在本项目评价范围内有4个与项目排放同类污染物有关的已批在建项目,即中山市得志金属表面处理有限公司电镀生产线项目、中山市三角镇高平污水处理有限公司危险废物综合利用项目、中山市锦成电镀有限公司改扩建项目、中山市永耀电镀有限公司改扩建项目。根据《环境影响评价技术导则一大气环境》HJ2.2-2018),若评价范围内存在其他在建项目、已批未建项目,也应考虑其建成后对评价范围的共同影响。因此,本项目在进行大气环境影响预测时,需叠加中山市得志金属表面处理有限公司申镀生产线项目、中山市三角镇高平污水处理有限公司危险废物综合利用项目、中山市锦成电镀有限公司改扩建项目、中山市永耀电镀有限公司改扩建项目排放的大气污染物对评价范围内大气环境的影响,其污染源源强如下表所示。

表 6.2-26 已批拟建、在建点源源强 源强单位: kg/h

序号	污染源名称	高度/m	直接/m	温度 /℃	风量 m³/h	SO_2	NO ₂	PM ₁₀	硫酸雾	氯化氢	铬酸雾	氨	TVOC	氰化氢
1	得志 P1	45	1.1	25	42000		0.0011		0.01	0.0000601		0.000086		
2	得志 P2	45	0.8	25	4000									0.00058
3	得志 P3	45	0.3	60	2367.6	0.035	0.326	0.042						
4	得志 P4	45	1.1	25	42000		0.0011		0.01	0.0000601		0.000086		
5	得志 P5	45	0.8	25	4000									0.00058
6	高平污水厂 危废项目 G1	25	0.7	25	25000	0.0019								
7	高平污水厂 危废项目 G2	25	0.4	25	10000				0.0022					
8	锦成 FQ-22425	29	0.6	25	15000				0.00241	0.00134		0.002		
9	锦成 FQ-20873	29	0.5	25	15000						0.0000797			
10	锦成 FQ-20871	27	0.6	60	325	0.0005	0.01221	0.0011						
11	锦成 FQ-000634	27	0.5	60	275	0.00042	0.01033	0.00093						
12	锦成 FQ-000633	29	0.5	25	15000		0.008			0.017				
13	锦成 FQ-00063	29	0.6	25	20000				0.043	0.012		0.000274		

14	永耀 FQ-17864	28	1.2	25	50000								0.2502	
15	永耀 FQ-47863	28	0.4	25	325	0.0005	0.0122	0.0011						
16	永耀 FQ-000799	28	1.8	25	100000				0.0132	0.0085				
17	永耀 DA005	28	0.34	25	5000						0.00004			
18	永耀 DA004	28	1.2	25	45000			0.2165					0.4428	
19	永耀 DA003	28	0.8	25	25000									0.001
20	永耀 DA002	28	0.7	25	25000		0.3082		0.0412	0.0001				
21	永耀 DA001	28	0.8	25	30000		0.002		0.028	0.0103		0.0011		

表 6.2-27 已批拟建、在建面源源强 源强单位: kg/h

序号	污染源 名称	X	Y	面源角 度	有效高 度 He	SO ₂	NO ₂	TSP	硫酸雾	氯化氢	铬酸雾	氨	TVOC	氰化氢
1	得志车 间4楼			20	24.5		0.0002		0.022	0.000174		0.00096		
2	得志车 间2楼			20	11.5		0.0002		0.022	0.000174				
3	高平污 水厂危 废项目 Gu2			30	5				0.0012					
4	高平污 水厂危 废项目 Gul			30	2.5	0.0013								

5	锦成 B4	15	17.5			0.00107	0.000595		0.000406		
6	锦成 B3	15	12.5		0.025						
7	锦成 A 栋	15	5				0.0123				
8	锦成 A2	15	6.5	0.001							
9	锦成 A1	15	3		0.022	0.019		0.000177	0.0000609		
10	永耀电 镀厂房 氰化氢	-70	19.2								0.0022
11	永耀电 镀厂房 氯化氢	-70	8.45				0.00996				
12	永耀电 镀厂硫 酸雾	-70	13.98			0.0604					
13	永耀电 镀厂房 铬酸雾	-70	14.35					0.0001			
14	永耀电 镀厂房 TVOC	-70	11.14							0.1033	
15	永耀电 镀厂房 氮氧化 物	-70	14.36	0.229							
16	永耀电 镀厂房	-70	19.2						0.0002		

_									
									(
- 1	I	$\Rightarrow \vdash$							(
- 1		<i>`æ</i> / = −							í.
- 1	I	女し し							(
- 1									1

6.2.2.5 预测内容及预测情景

根据《环境影响评价技术导则大气环境》(HJ2.2-2018)要求,本评价主要预测评价项目实施后,(1)全年逐次小时气象条件下,各环境空气保护目标、网格点处的地面浓度和评价范围内的最大地面小时浓度;(2)叠加区域现状浓度、"以新代老"污染源、区域削减污染源及其他在建、拟建的污染源后,在长期,各环境空气保护目标和网格点主要污染物保证率小时平均质量浓度、日平均质量浓度和年平均浓度的达标情况(对于项目排放的而其他污染物仅有短期浓度限值的,评价其叠加现状浓度后短期浓度的达标情况);(3)非正常排放情况,全年逐次小时气象条件下,环境空气保护目标的最大地面小时质量浓度和评价范围内的最大地面小时质量浓度。(4)对于项目厂界浓度满足大气污染物厂界浓度限值,但厂界外大气污染物短期浓度贡献浓度超过环境质量浓度限值的,可以自厂界向外设置一定范围的大气环境防护区域,以确保大气环境防护区域外的污染物浓度贡献浓度满足环境质量标准。

本规划大气环境影响预测情景组合情况如下表所示。

表 6.2-28 本项目预测情景组合

序号	评价 对象	污染源类型	污染源排 放形式	预测因子	预测内容	评价内容
, , , , , , , , , , , , , , , , , , ,			110,10,24	非甲烷总烃	1小时平均质 量浓度	
					日平均和年	
				PM_{10}	平均质量浓	
					度	
					日平均和年	
				TSP	平均质量浓	
	达标 区评 价项 目				度	环境空气保护目
1		新增污染源	正常排放	氯化氢	1小时和日平	标和网格点最大
1		別項行朱が		水(四至)	均质量浓度	浓度占标率
				硫酸雾	1小时和日平	水 及日本半
	Н			りに自文ラブ	均质量浓度	
				氨	1小时平均质	
				女(量浓度	
				トレイン 格酸雾 	1小时平均质	
				11 FX 27	量浓度	
				氰化氢	日平均质量	
				FI TUSE	浓度	
2		新增污染源-	正常排放	非甲烷总烃	1小时平均质	短期浓度的达标

		"以新代老"污染源-区			量浓度	情况
		域削减污染源+其他在			95%保证率	
		建、拟建的污染源		DM	日平均和年	
				PM_{10}	平均质量浓	
					度	
					95%保证率	
				TSP	日平均和年	
				151	平均质量浓	
					度	
			非正常排	非甲烷总	1小时平均质	环境空气保护目
3		新增污染源	放	・ ・ ・ た、TSP	量浓度	标和网格点最大
			ЛХ	定、15P	里似没	浓度占标率
4	大	新增污染源一"以新带 老"污染源(如有)+ 项目全厂现有污染源	正常排放	非甲烷总 烃、TSP、 PM ₁₀	短期浓度	大气环境防护距 离

6.2.2.6 预测估算结果

1、项目新增污染源正常工况贡献质量浓度预测结果及评价

(1) 氯化氢

本项目新增污染源正常工况的氯化氢 1 小时平均浓度和日平均浓度贡献值预测结果见下表所示。

表 6.2-29 正常排放时氯化氢 1 小时平均浓度贡献值预测结果

点名称	浓度类	浓度增量	出现时间	评价标准	占标	是否超
总石柳	型	$(\mu g/m^3)$	(YYMMDDHH)	(μg/m^3)	率%	标
上赖生	1 小时	1.21	21100302	50	2.41	达标
蔡份	1 小时	1.21	21101904	50	2.41	达标
高平村	1 小时	2.78	21082307	50	5.56	达标
下赖生	1 小时	1.61	21041622	50	3.22	达标
新二村	1 小时	0.78	21102802	50	1.55	达标
顷九	1 小时	0.65	21082008	50	1.31	达标
福隆围	1 小时	0.46	21123102	50	0.91	达标
掘尾	1 小时	0.23	21082008	50	0.45	达标
新团结 村	1 小时	0.34	21030505	50	0.68	达标
头围	1 小时	0.4	21030505	50	0.79	达标
团结村	1 小时	0.48	21031302	50	0.95	达标
新洋村	1 小时	0.36	21102802	50	0.71	达标
冯马村	1 小时	0.8	21021324	50	1.61	达标

新兴村	1 小时	0.3	21040605	50	0.61	达标
高平小 学	1 小时	1.13	21072506	50	2.27	达标
冯马小 学	1 小时	0.58	21101104	50	1.15	达标
横沥中学	1 小时	0.28	21021324	50	0.56	达标
网格	1 小时	5.57	21082008	50	11.13	达标

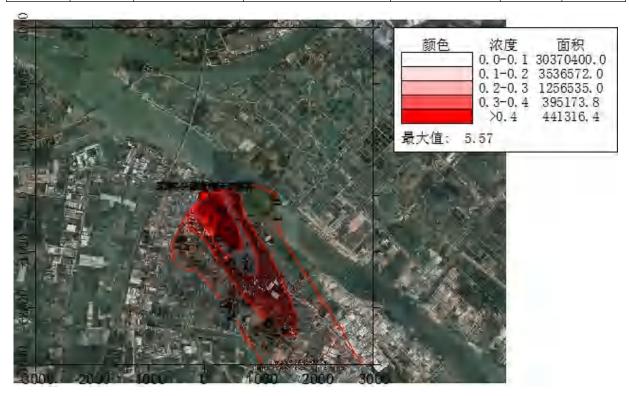


图 6.2-11 氯化氢 1 小时平均浓度贡献值分布图(单位: ug/m³)

表 6.2-29 正常排放时氯化氢日平均浓度贡献值预测结果

		• •				
点名称	浓度类	浓度增量	出现时间	评价标准	占标	是否超
总石柳	型	(µg/m^3)	(YYMMDDHH)	(µg/m^3)	率%	标
上赖生	日平均	0.15	211003	15	0.99	达标
蔡份	日平均	0.14	210908	15	0.91	达标
高平村	日平均	0.62	210120	15	4.1	达标
下赖生	日平均	0.16	210908	15	1.05	达标
新二村	日平均	0.07	211126	15	0.45	达标
顷九	日平均	0.04	210604	15	0.27	达标
福隆围	日平均	0.05	210104	15	0.31	达标
掘尾	日平均	0.02	210302	15	0.12	达标
新团结	日平均	0.02	210305	15	0.14	达标
村	口干均 	0.02	210303	15	0.14	
头围	日平均	0.02	210305	15	0.14	达标

团结村	日平均	0.02	210313	15	0.14	达标
新洋村	日平均	0.03	210101	15	0.18	达标
冯马村	日平均	0.07	210123	15	0.44	达标
新兴村	日平均	0.02	210115	15	0.16	达标
高平小 学	日平均	0.08	210104	15	0.53	达标
冯马小 学	日平均	0.02	211011	15	0.16	达标
横沥中学	日平均	0.02	210123	15	0.15	达标
	日平均	1.61	211210	15	10.73	达标

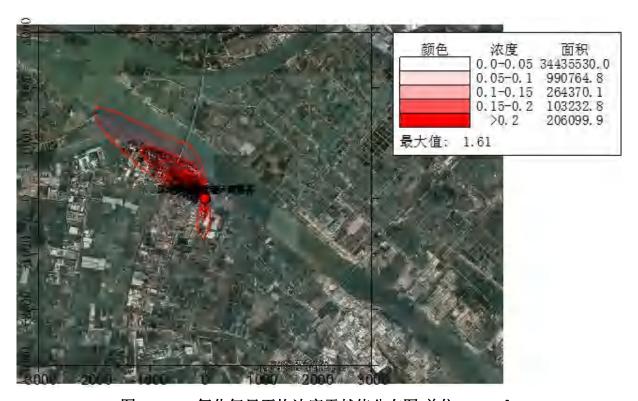


图 6.2-11 氯化氢日平均浓度贡献值分布图(单位: ug/m³)

由预测结果可知,正常排放下,评价范围内网格点氯化氢的最大 1 小时平均和日平均浓度贡献值为 5.57ug/m³和 1.61ug/m³,占标率分别为 11.13%和 10.73%。敏感点非甲烷总烃的最大 1 小时平均和日平均浓度贡献值为 2.78ug/m³和 0.62ug/m³,占标率为 5.56%和 4.1%,达到《环境影响评价技术导则 大气环境》(HJ2.2-2018)表 D.1 其他污染物空气质量浓度参考限值。

(2) 硫酸雾

本项目新增污染源正常工况的硫酸雾 1 小时平均浓度和日平均浓度贡献值预测结果 见下表所示。

表 6.2-29 正常排放时硫酸雾 1 小时平均浓度贡献值预测结果

₹ 0.2-2		7-77 11 11 11 1V	时则的分工小时一场在		<i>-</i> 11/N	
点名称	浓度类	浓度增量	出现时间	评价标准	占标	是否超
点右你 	型	$(\mu g/m^3)$	(YYMMDDHH)	$(\mu g/m^3)$	率%	标
上赖生	1 小时	1.21	21100302	300	0.4	达标
蔡份	1 小时	1.21	21101904	300	0.4	达标
高平村	1 小时	2.78	21082307	300	0.93	达标
下赖生	1 小时	1.61	21041622	300	0.54	达标
新二村	1 小时	0.78	21102802	300	0.26	达标
顷九	1 小时	0.63	21112508	300	0.21	达标
福隆围	1 小时	0.46	21123102	300	0.15	达标
掘尾	1 小时	0.21	21030207	300	0.07	达标
新团结	1 小时	0.34	21030505	300	0.11	达标
村	1 /]՝իկ	0.34	21030303	300	0.11	
头围	1 小时	0.4	21030505	300	0.13	达标
团结村	1 小时	0.48	21031302	300	0.16	达标
新洋村	1 小时	0.36	21102802	300	0.12	达标
冯马村	1 小时	0.8	21021324	300	0.27	达标
新兴村	1 小时	0.3	21040605	300	0.1	达标
高平小 学	1 小时	1.13	21072506	300	0.38	达标
冯马小 学	1 小时	0.58	21101104	300	0.19	达标
横沥中学	1 小时	0.28	21021324	300	0.09	达标
网格	1 小时	5.06	21082008	300	1.69	达标

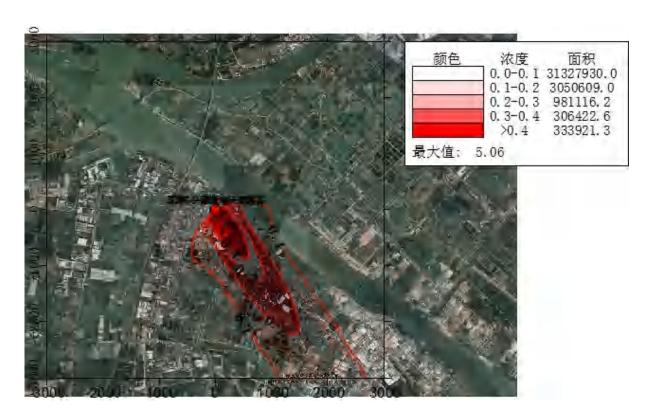


图 6.2-12 硫酸雾 1 小时平均浓度贡献值分布图(单位: ug/m³)

表 6.2-29 正常排放时硫酸雾日平均浓度贡献值预测结果

占夕轮	浓度类	浓度增量	出现时间	评价标准	占标	是否超
点名称	型	(µg/m^3)	(YYMMDDHH)	(μg/m ³)	率%	标
上赖生	日平均	0.15	211003	100	0.15	达标
蔡份	日平均	0.14	210908	100	0.14	达标
高平村	日平均	0.62	210120	100	0.62	达标
下赖生	日平均	0.16	210908	100	0.16	达标
新二村	日平均	0.07	211126	100	0.07	达标
顷九	日平均	0.03	210604	100	0.03	达标
福隆围	日平均	0.05	210104	100	0.05	达标
掘尾	日平均	0.02	210302	100	0.02	达标
新团结	 日平均	0.02	210305	100	0.02	
村	ПТ	0.02	210303	100	0.02	乙你
头围	日平均	0.02	210305	100	0.02	达标
团结村	日平均	0.02	210313	100	0.02	达标
新洋村	日平均	0.03	211126	100	0.03	达标
冯马村	日平均	0.07	210123	100	0.07	达标
新兴村	日平均	0.02	210115	100	0.02	达标
高平小	日平均	0.08	210104	100	0.08	达标
学	н 1 м	0.08	210104	100	0.08	心你
冯马小	 日平均	0.02	211011	100	0.02	达标
学	H 120	0.02	211011	100	0.02	×2.1/1,

横沥中 学	日平均	0.02	210123	100	0.02	达标
网格	日平均	1.61	211210	100	1.61	达标

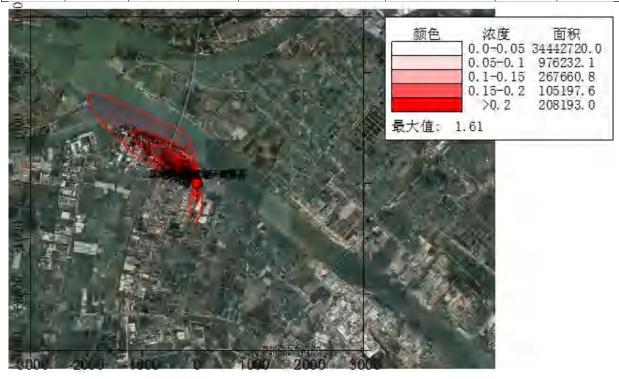


图 6.2-13 硫酸雾日平均浓度贡献值分布图(单位: ug/m³)

由预测结果可知,正常排放下,评价范围内网格点硫酸雾的最大 1 小时平均和日平均浓度贡献值为 5.06ug/m³和 1.61ug/m³,占标率分别为 1.69%和 1.61%。敏感点硫酸雾的最大 1 小时平均和日平均浓度贡献值为 2.78ug/m³和 0.62ug/m³,占标率为 2.93%和 0.62%,达到《环境影响评价技术导则 大气环境》(HJ2.2-2018)表 D.1 其他污染物空气质量浓度参考限值。

(3) 氨

本项目新增污染源正常工况的氨1小时平均浓度贡献值预测结果见下表所示。

	次 0.5 27 正 市 1									
点名称	浓度类	浓度增量	出现时间	评价标准	占标	是否超				
总有你	型	(µg/m^3)	(YYMMDDHH)	(µg/m^3)	率%	标				
上赖生	1 小时	0.67	21100302	200	0.34	达标				
蔡份	1 小时	0.67	21101904	200	0.34	达标				
高平村	1 小时	1.55	21082307	200	0.77	达标				
下赖生	1 小时	0.89	21041622	200	0.45	达标				
新二村	1 小时	0.43	21102802	200	0.22	达标				
顷九	1 小时	0.34	21082008	200	0.17	达标				

表 6.2-29 正常排放时氨 1 小时平均浓度贡献值预测结果

福隆围	1 小时	0.25	21123102	200	0.13	达标
掘尾	1 小时	0.12	21082008	200	0.06	达标
新团结 村	1 小时	0.19	21030505	200	0.09	达标
头围	1 小时	0.22	21030505	200	0.11	达标
团结村	1 小时	0.26	21031302	200	0.13	达标
新洋村	1 小时	0.2	21102802	200	0.1	达标
冯马村	1 小时	0.45	21021324	200	0.22	达标
新兴村	1 小时	0.17	21040605	200	0.08	达标
高平小 学	1 小时	0.63	21072506	200	0.31	达标
冯马小 学	1 小时	0.32	21101104	200	0.16	达标
横沥中 学	1 小时	0.16	21021324	200	0.08	达标
网格	1 小时	2.96	21082008	200	1.48	达标

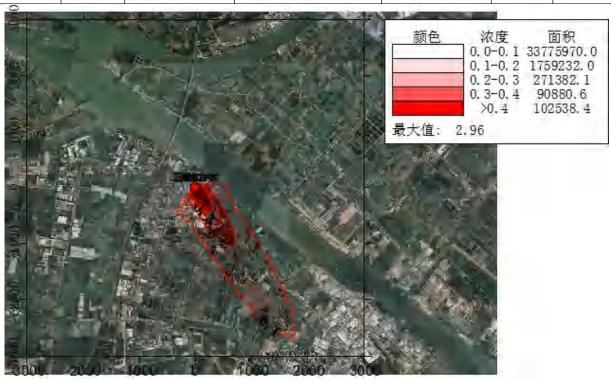


图 6.2-13 氨 1 小时平均浓度贡献值分布图(单位: ug/m³)

由预测结果可知,正常排放下,评价范围内网格点氨的最大 1 小时平均浓度贡献值为2.96ug/m³,占标率分别为1.48%。敏感点氨的最大 1 小时平均浓度贡献值为1.55ug/m³³,占标率为0.77%,达到《环境影响评价技术导则 大气环境》(HJ2.2-2018)表 D.1 其他污染物空气质量浓度参考限值。

(4) 氰化氢

本项目新增污染源正常工况的氰化氢日平均浓度贡献值预测结果见下表所示。

表 6.2-29 正常排放时氰化氢日平均浓度贡献值预测结果

	浓度类	浓度增量	出现时间	评价标准	占标	是否超
点名称	型型	(μg/m^3)	(YYMMDDHH)	(μg/m ³)	率%	标
上赖生	日平均	0.05	211006	10	0.49	达标
蔡份	日平均	0.05	211008	10	0.5	达标
高平村	日平均	0.17	210721	10	1.65	达标
下赖生	日平均	0.07	211008	10	0.7	达标
新二村	日平均	0.05	210101	10	0.5	达标
顷九	日平均	0.05	210604	10	0.5	达标
福隆围	日平均	0.04	211222	10	0.39	达标
掘尾	日平均	0.01	210604	10	0.15	达标
新团结 村	日平均	0.01	210820	10	0.11	达标
头围	日平均	0.01	210820	10	0.09	达标
团结村	日平均	0.01	211125	10	0.15	达标
新洋村	日平均	0.03	210101	10	0.33	达标
冯马村	日平均	0.04	210522	10	0.42	达标
新兴村	日平均	0.02	210331	10	0.21	达标
高平小 学	日平均	0.07	211025	10	0.65	达标
冯马小 学	日平均	0.02	210716	10	0.19	达标
横沥中 学	日平均	0.02	210522	10	0.2	达标
网格	日平均	0.3	210427	10	3.04	达标

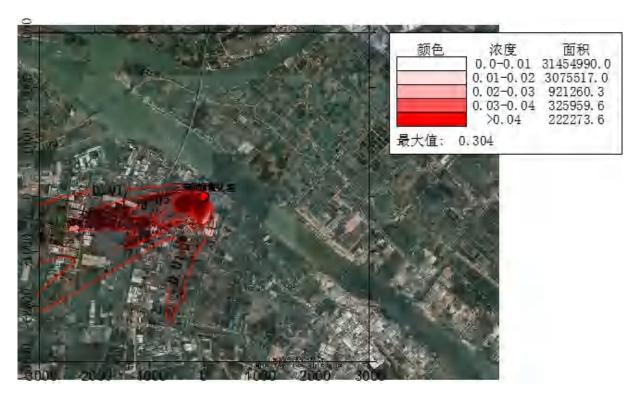


图 6.2-14 氰化氢日平均浓度贡献值分布图(单位: ug/m³)

由预测结果可知,正常排放下,评价范围内网格点氰化氢的最大日平均浓度贡献值为 0.3ug/m³,占标率分别为 3.04%。敏感点氰化氢的最大日平均浓度贡献值为 0.17ug/m³,占标率为 1.65%,达到前苏联(1974),居住区最高容许浓度要求。

(5) 铬酸雾

本项目新增污染源正常工况的铬酸雾日平均浓度贡献值预测结果见下表所示。

农 0.2-27 正市 计成时						
点名称	浓度类	浓度增量	出现时间	评价标准	占标	是否超
点有你	型	(μg/m^3)	(YYMMDDHH)	(µg/m^3)	率%	标
上赖生	1 小时	0	21100302	1.5	0.27	达标
蔡份	1 小时	0	21101904	1.5	0.27	达标
高平村	1 小时	0.01	21082307	1.5	0.62	达标
下赖生	1 小时	0.01	21041622	1.5	0.36	达标
新二村	1 小时	0	21102802	1.5	0.17	达标
顷九	1 小时	0	21082008	1.5	0.31	达标
福隆围	1 小时	0	21091008	1.5	0.11	达标
掘尾	1 小时	0	21082008	1.5	0.11	达标
新团结 村	1 小时	0	21082008	1.5	0.1	达标
头围	1小时	0	21030505	1.5	0.09	达标
团结村	1 小时	0	21022808	1.5	0.11	达标

表 6.2-29 正常排放时铬酸雾日平均浓度贡献值预测结果

新洋村	1小时	0	21102802	1.5	0.08	达标
冯马村	1 小时	0	21021324	1.5	0.18	达标
新兴村	1 小时	0	21040605	1.5	0.07	达标
高平小 学	1 小时	0	21072506	1.5	0.25	达标
冯马小 学	1 小时	0	21071608	1.5	0.17	达标
横沥中学	1 小时	0	21021324	1.5	0.06	达标
网格	1 小时	0.03	21082008	1.5	1.85	达标

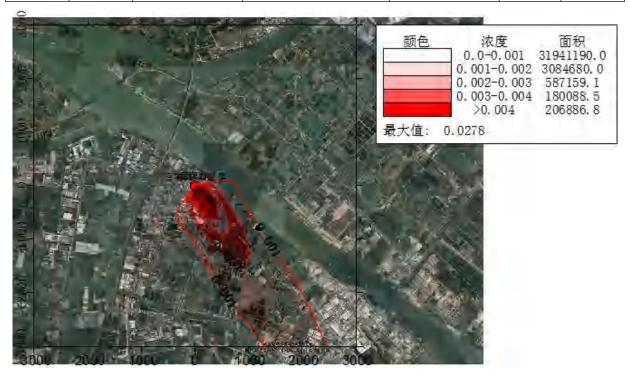


图 6.2-15 铬酸雾日平均浓度贡献值分布图(单位: ug/m³)

由预测结果可知,正常排放下,评价范围内网格点铬酸雾的最大日平均浓度贡献值为0.03ug/m³,占标率分别为1.85%。敏感点铬酸雾的最大日平均浓度贡献值为0.01ug/m³,占标率为0.62%,达到《工业企业设计卫生标准》(TJ36-79)中居住区容许浓度要求。

(6) 非甲烷总烃

本项目新增污染源正常工况的非甲烷总烃1小时平均浓度贡献值预测结果见下表所示。

表 6.2-2	9 正常排放时	非甲烷总烃1小时平均	均浓度贡献值预	测结果
			· · · · · · · · · · · · · · · · · · ·	

占夕稅	浓度类	浓度增量	出现时间	评价标准	占标	是否超
点名称	型	(µg/m^3)	(YYMMDDHH)	(µg/m^3)	率%	标
上赖生	1 小时	2.68	21100302	2,000.00	0.13	达标

蔡份	1 小时	2.68	21101904	2,000.00	0.13	达标
高平村	1 小时	6.18	21082307	2,000.00	0.31	达标
下赖生	1 小时	3.58	21041622	2,000.00	0.18	达标
新二村	1 小时	1.73	21102802	2,000.00	0.09	达标
顷九	1 小时	1.26	21112508	2,000.00	0.06	达标
福隆围	1小时	1.01	21123102	2,000.00	0.05	达标
掘尾	1小时	0.46	21030207	2,000.00	0.02	达标
新团结 村	1 小时	0.76	21030505	2,000.00	0.04	达标
头围	1 小时	0.88	21030505	2,000.00	0.04	达标
团结村	1 小时	1.06	21031302	2,000.00	0.05	达标
新洋村	1 小时	0.79	21102802	2,000.00	0.04	达标
冯马村	1 小时	1.79	21021324	2,000.00	0.09	达标
新兴村	1 小时	0.67	21040605	2,000.00	0.03	达标
高平小 学	1 小时	2.52	21072506	2,000.00	0.13	达标
冯马小 学	1 小时	1.28	21101104	2,000.00	0.06	达标
横沥中 学	1 小时	0.62	21021324	2,000.00	0.03	达标
网格	1小时	9.44	21071007	2,000.00	0.47	达标

图 6.2-16 非甲烷总烃 1 小时平均浓度贡献值分布图(单位: ug/m³)

由预测结果可知,正常排放下,评价范围内网格点非甲烷总烃的最大1小时平均浓

度贡献值为9.44ug/m³,占标率分别为0.47%。敏感点非甲烷总烃的最大1小时平均浓度 贡献值为6.18ug/m³,占标率为0.31%,达到《大气污染物综合排放详解》中的标准取值。

(7) TVOC

本项目新增污染源正常工况的 TVOC8 小时平均浓度贡献值预测结果见下表所示。

表 6.2-29 正常排放时 TVOC8 小时平均浓度贡献值预测结果

			HJ I V O CO /J HJ 2014	以父父叫《西沙尔	-H -/	
点名称	浓度类	浓度增量	出现时间	评价标准	占标	是否超
点有你	型	$(\mu g/m^3)$	(YYMMDDHH)	(μg/m ³)	率%	标
上赖生	8 小时	0.68	21100308	1,200.00	0.06	达标
蔡份	8 小时	0.6	21090808	1,200.00	0.05	达标
高平村	8 小时	2.81	21020508	1,200.00	0.23	达标
下赖生	8 小时	0.75	21041624	1,200.00	0.06	达标
新二村	8 小时	0.37	21030508	1,200.00	0.03	达标
顷九	8 小时	0.16	21112508	1,200.00	0.01	达标
福隆围	8 小时	0.2	21123108	1,200.00	0.02	达标
掘尾	8 小时	0.08	21030208	1,200.00	0.01	达标
新团结	8 小时	0.15	21030508	1,200.00	0.01	达标
村	ן אין ∕ ס	0.13	21030308	1,200.00	0.01	公 你
头围	8 小时	0.15	21030508	1,200.00	0.01	达标
团结村	8 小时	0.15	21031308	1,200.00	0.01	达标
新洋村	8 小时	0.16	21102808	1,200.00	0.01	达标
冯马村	8 小时	0.31	21021324	1,200.00	0.03	达标
新兴村	8 小时	0.15	21021224	1,200.00	0.01	达标
高平小	8 小时	0.34	21102524	1,200.00	0.03	达标
学	0 1 11			1,200.00	0.00	,0,1,1
冯马小	8 小时	0.16	21101108	1,200.00	0.01	达标
学						
横沥中 学	8 小时	0.1	21021324	1,200.00	0.01	达标
网格	8 小时	5.52	21043008	1,200.00	0.46	达标

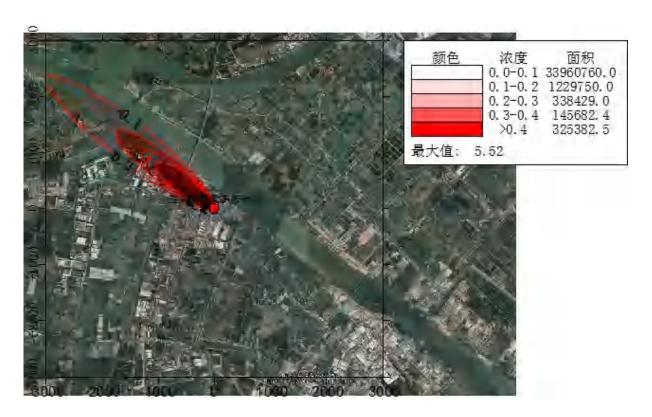


图 6.2-17 TVOC8 小时平均浓度贡献值分布图(单位: ug/m³)

由预测结果可知,正常排放下,评价范围内网格点 TVOC 的最大 8 小时平均浓度贡献值为 5.52ug/m³,占标率分别为 0.46%。敏感点 TVOC 的最大 8 小时平均浓度贡献值为 2.81ug/m³,占标率为 0.2%,达到《环境影响评价技术导则 大气环境》(HJ2.2-2018)表 D.1 其他污染物空气质量浓度参考限值。

$(8) PM_{10}$

本项目新增污染源正常工况的 PM₁₀ 日均浓度和年均浓度贡献值预测结果见下表所示。

	衣 0.2-29 正吊排放的 PM10 口均干均浓度贝默值 澳侧结米							
点名称	浓度类	浓度增量	出现时间	评价标准	占标率%(叠加背	是否超		
点石协	型	(μg/m^3)	(YYMMDDHH)	(μg/m^3)	景以后)	标		
上赖生	日平均	0.07	210426	150	0.05	达标		
蔡份	日平均	0.11	211008	150	0.07	达标		
高平村	日平均	0.18	210721	150	0.12	达标		
下赖生	日平均	0.15	211008	150	0.1	达标		
新二村	日平均	0.04	211226	150	0.03	达标		
顷九	日平均	0.1	210604	150	0.07	达标		
福隆围	日平均	0.05	211217	150	0.03	达标		
掘尾	日平均	0.03	210604	150	0.02	达标		

表 6.2-29 正常排放时 PM₁₀ 日均平均浓度贡献值预测结果

新团结村	日平均	0.02	210523	150	0.01	达标
头围	日平均	0.01	210523	150	0.01	达标
团结村	日平均	0.02	210228	150	0.02	达标
新洋村	日平均	0.02	210108	150	0.01	达标
冯马村	日平均	0.07	210330	150	0.04	达标
新兴村	日平均	0.01	210318	150	0.01	达标
高平小 学	日平均	0.09	211226	150	0.06	达标
冯马小 学	日平均	0.03	210716	150	0.02	达标
横沥中学	日平均	0.03	210330	150	0.02	达标
网格	日平均	0.2	210717	150	0.14	达标

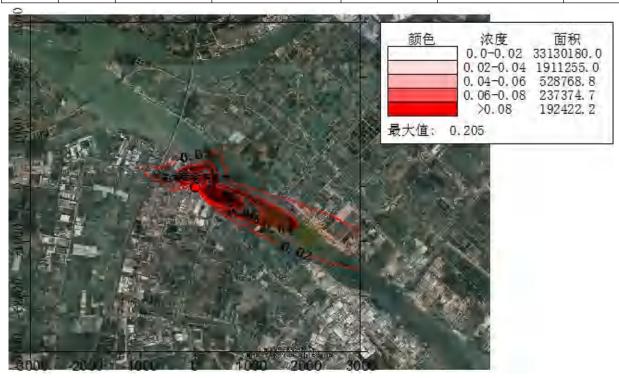


图 6.2-18 PM₁₀ 日均浓度贡献值分布图(单位: ug/m³)

表 6.2-31 正常排放时 PM10 年平均浓度贡献值预测结果表

点名称	浓度类	浓度增量	出现时间	评价标准	占标率%(叠加背	是否超
总有你	型	$(\mu g/m^3)$	(YYMMDDHH)	(μg/m^3)	景以后)	标
上赖生	年平均	0.01	平均值	70	0.01	达标
蔡份	年平均	0.01	平均值	70	0.01	达标
高平村	年平均	0.04	平均值	70	0.06	达标
下赖生	年平均	0.01	平均值	70	0.01	达标
新二村	年平均	0	平均值	70	0	达标

顷九	年平均	0.01	平均值	70	0.01	达标
福隆围	年平均	0	平均值	70	0.01	达标
掘尾	年平均	0	平均值	70	0	达标
新团结 村	年平均	0	平均值	70	0	达标
头围	年平均	0	平均值	70	0	达标
团结村	年平均	0	平均值	70	0	达标
新洋村	年平均	0	平均值	70	0	达标
冯马村	年平均	0.01	平均值	70	0.01	达标
新兴村	年平均	0	平均值	70	0	达标
高平小 学	年平均	0.01	平均值	70	0.01	达标
冯马小 学	年平均	0	平均值	70	0	达标
横沥中学	年平均	0	平均值	70	0	达标
网格	年平均	0.04	平均值	70	0.06	达标

图 6.2-19 PM₁₀年平均浓度贡献值分布图(单位: ug/m³)

由预测结果可知,正常排放下,评价范围内网格点 PM_{10} 的最大日均浓度和最大年均浓度贡献值分别为 $0.2ug/m^3$ 、 $0.04ug/m^3$,占标率分别为 0.14%、0.06%。敏感点 PM_{10} 的最大日均浓度和最大年均浓度贡献值分别为 $0.18ug/m^3$ 、 $0.04ug/m^3$,占标率分别为 0.12%、0.06%。达到《环境空气质量标准》(GB3095-2012)及其修改单的二级标准。

(9) TSP

本项目新增污染源正常工况的 TSP 日均浓度和年均浓度贡献值预测结果见下表所示。

表 6.2-32 正常排放时 TSP 日平均浓度贡献值预测结果表

点名称	浓度类	浓度增量	出现时间	评价标准	占标	是否超
	型	$(\mu g/m^3)$	(YYMMDDHH)	(µg/m^3)	率%	标
上赖生	日平均	0.77	211003	300	0.26	达标
蔡份	日平均	0.67	210908	300	0.22	达标
高平村	日平均	5.78	210205	300	1.93	达标
下赖生	日平均	1.13	210304	300	0.38	达标
新二村	日平均	0.28	210101	300	0.09	达标
顷九	日平均	1.25	211229	300	0.42	达标
福隆围	日平均	0.19	211222	300	0.06	达标
掘尾	日平均	0.97	211223	300	0.32	达标
新团结	日平均	1.02	211221	300	0.34	达标
村	口干均 	1.02	211221	300	0.34	上
头围	日平均	0.75	211221	300	0.25	达标
团结村	日平均	0.67	211224	300	0.22	达标
新洋村	日平均	0.1	210101	300	0.03	达标
冯马村	日平均	0.32	210123	300	0.11	达标
新兴村	日平均	0.06	210331	300	0.02	达标
高平小	日平均	0.44	211025	300	0.15	
学	ПТ	0.44	211023	300	0.13	2240
冯马小	 日平均	0.49	210930	300	0.16	上 送标
学	1 1 70	U.T/	210730	300	0.10	×2.441,
横沥中	 日平均	0.08	210123	300	0.03	 达标
学	1 1 7 7	0.00	210123	300	0.03	~
网格	日平均	28.96	210218	300	9.65	达标

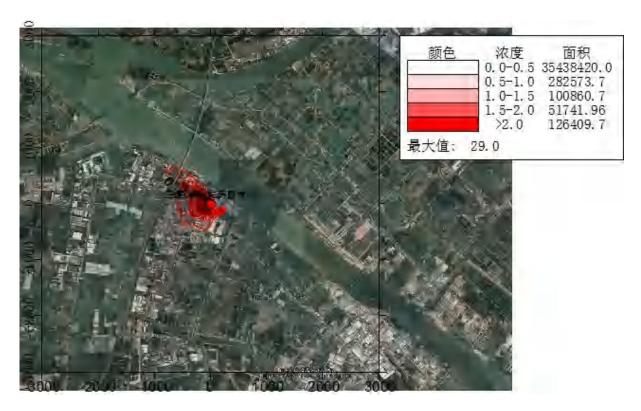


图 6.2-20 TSP 日均浓度贡献值分布图(单位: ug/m³)

表 6.2-32 正常排放时 TSP 年平均浓度贡献值预测结果表

上力和	浓度类	浓度增量	出现时间	评价标准	占标	是否超
点名称	型	$(\mu g/m^3)$	(YYMMDDHH)	(μg/m^3)	率%	标
上赖生	年平均	0.1	平均值	200	0.05	达标
蔡份	年平均	0.06	平均值	200	0.03	达标
高平村	年平均	0.92	平均值	200	0.46	达标
下赖生	年平均	0.1	平均值	200	0.05	达标
新二村	年平均	0.02	平均值	200	0.01	达标
顷九	年平均	0.04	平均值	200	0.02	达标
福隆围	年平均	0.02	平均值	200	0.01	达标
掘尾	年平均	0.03	平均值	200	0.01	达标
新团结	年平均	0.02	平均值	200	0.01	达标
村	中上均	0.02	均阻	200	0.01	心你
头围	年平均	0.02	平均值	200	0.01	达标
团结村	年平均	0.01	平均值	200	0.01	达标
新洋村	年平均	0.01	平均值	200	0	达标
冯马村	年平均	0.04	平均值	200	0.02	达标
新兴村	年平均	0.01	平均值	200	0	达标
高平小	年平均	0.04	平均值	200	0.02	达标
学	十十岁	0.0 4		200	0.02	
冯马小	年平均	0.02	平均值	200	0.01	达标
学	十一岁	0.02	一一一一一一	200	0.01	

横沥中学	年平均	0.01	平均值	200	0	达标
网格	年平均	7.77	平均值	200	3.88	达标

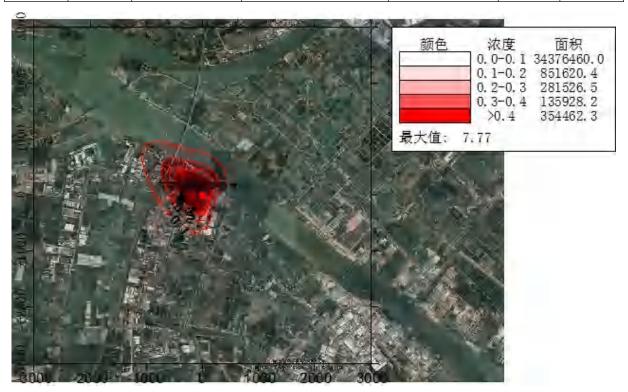


图 6.2-20 TSP 年平均浓度贡献值分布图(单位: ug/m³)

由预测结果可知,正常排放下,评价范围内网格点 TSP 的最大日均浓度和最大年均浓度贡献值分别为 28.96ug/m³、7.77ug/m³,占标率分别为 9.65%、3.88%。敏感点 TSP 的最大日均浓度和最大年均浓度贡献值分别为 5.78ug/m³、0.92ug/m³,占标率分别为 1.93%、0.46%。达到《环境空气质量标准》(GB3095-2012)及其修改单的二级标准。

$(10) SO_2$

本项目新增污染源正常工况的 SO_2 1 小时浓度、日均浓度和年平均贡献值预测结果见下表所示。

			70th 1 2 2 2 1 h 1 1 h 3 1	70人人人们在1000	-HVIC.PC	
点名称	浓度类	浓度增量	出现时间	评价标准	占标	是否超
点有你	型	(μg/m ³)	(YYMMDDHH)	(µg/m^3)	率%	标
上赖生	1 小时	0.13	21062507	500	0.03	达标
蔡份	1 小时	0.13	21070807	500	0.03	达标
高平村	1 小时	0.17	21050108	500	0.03	达标
下赖生	1 小时	0.11	21071107	500	0.02	达标
新二村	1 小时	0.07	21091008	500	0.01	达标

表 6.2-32 正常排放时 SO₂ 1 小时平均浓度贡献值预测结果表

顷九	1 小时	0.22	21052308	500	0.04	达标
福隆围	1 小时	0.05	21091008	500	0.01	达标
掘尾	1 小时	0.11	21022808	500	0.02	达标
新团结 村	1 小时	0.09	21052308	500	0.02	达标
头围	1 小时	0.08	21052308	500	0.02	达标
团结村	1 小时	0.14	21022808	500	0.03	达标
新洋村	1 小时	0.06	21112908	500	0.01	达标
冯马村	1 小时	0.11	21111508	500	0.02	达标
新兴村	1 小时	0.05	21030108	500	0.01	达标
高平小 学	1 小时	0.09	21091008	500	0.02	达标
冯马小 学	1 小时	0.12	21071608	500	0.02	达标
横沥中学	1 小时	0.07	21111508	500	0.01	达标
网格	1 小时	0.37	21081009	500	0.07	达标

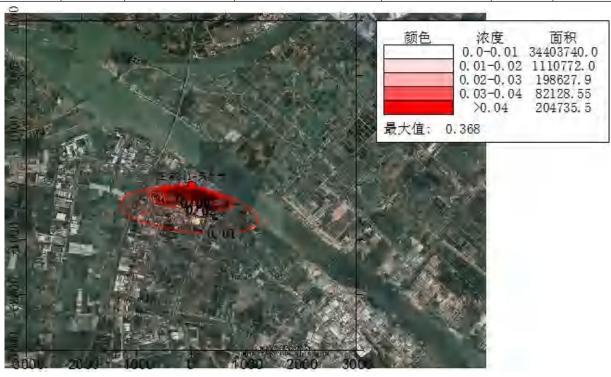


图 6.2-21 SO₂1 小时浓度贡献值分布图(单位: ug/m³)

表 6.2-32 正常排放时 SO₂ 日均浓度贡献值预测结果表

点名称	浓度类	浓度增量	出现时间	评价标准	占标	是否超
总石你	型	(μg/m ³)	(YYMMDDHH)	(µg/m^3)	率%	标
上赖生	日平均	0.02	210209	150	0.01	达标
蔡份	日平均	0.03	211008	150	0.02	达标

高平村	日平均	0.05	210721	150	0.03	达标
下赖生	日平均	0.04	211008	150	0.02	达标
新二村	日平均	0.01	211226	150	0.01	达标
顷九	日平均	0.02	210604	150	0.02	达标
福隆围	日平均	0.01	211217	150	0.01	达标
掘尾	日平均	0.01	210604	150	0.01	达标
新团结 村	日平均	0	210604	150	0	达标
头围	日平均	0	210604	150	0	达标
团结村	日平均	0.01	210228	150	0	达标
新洋村	日平均	0.01	210108	150	0	达标
冯马村	日平均	0.02	210330	150	0.01	达标
新兴村	日平均	0	210318	150	0	达标
高平小 学	日平均	0.02	211226	150	0.01	达标
冯马小 学	日平均	0.01	210805	150	0	达标
横沥中 学	日平均	0.01	210330	150	0.01	达标
网格	日平均	0.05	210427	150	0.03	达标

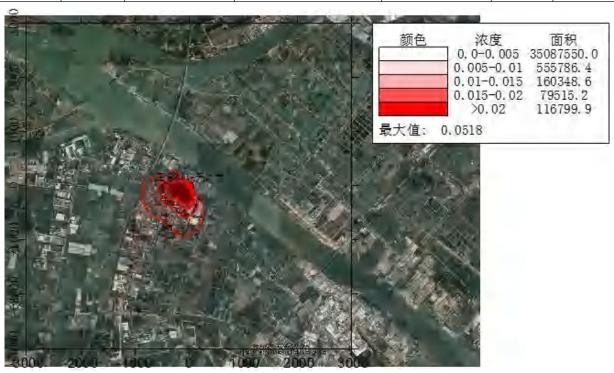


图 6.2-22 SO₂ 日均浓度贡献值分布图(单位: ug/m³)

表 6.2-32 正常排放时 SO_2 年平均浓度贡献值预测结果表

点名称 浓度类 浓度增量 出现时间 评价标准 占标

	型	(µg/m^3)	(YYMMDDHH)	(μg/m ³)	率%	标
上赖生	年平均	0	平均值	60	0	达标
蔡份	年平均	0	平均值	60	0	达标
高平村	年平均	0.01	平均值	60	0.02	达标
下赖生	年平均	0	平均值	60	0	达标
新二村	年平均	0	平均值	60	0	达标
顷九	年平均	0	平均值	60	0	达标
福隆围	年平均	0	平均值	60	0	达标
掘尾	年平均	0	平均值	60	0	达标
新团结 村	年平均	0	平均值	60	0	达标
头围	年平均	0	平均值	60	0	达标
团结村	年平均	0	平均值	60	0	达标
新洋村	年平均	0	平均值	60	0	达标
冯马村	年平均	0	平均值	60	0	达标
新兴村	年平均	0	平均值	60	0	达标
高平小	年平均	0	平均值	60	0	达标
学	十十均	U	一 均但	60	U	
冯马小	年平均	0	平均值	60	0	达标
学	十一均	U	一均阻	00	U	
横沥中	年平均	0	平均值	60	0	达标
学	十一均	U	一均阻	00	U	
网格	年平均	0.01	平均值	60	0.02	达标

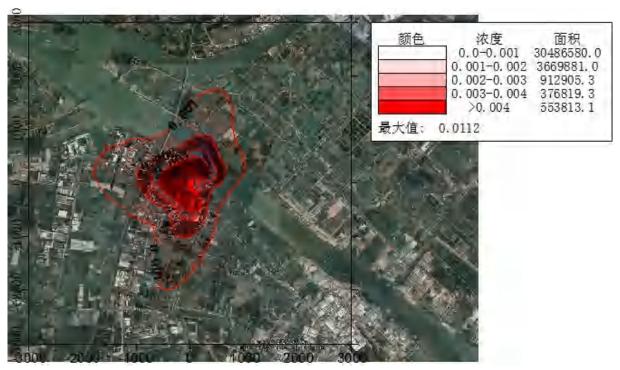


图 6.2-24 SO₂年平均浓度贡献值分布图(单位: ug/m³)

由预测结果可知,正常排放下,评价范围内网格点 SO₂ 的最大 1 小时浓度、日均浓度和最大年均浓度贡献值分别为 0.37ug/m³、0.05ug/m³、0.01ug/m³,占标率分别为 0.07%、 0.03%、 0.02%。敏感点 SO₂ 的最大 1 小时浓度、日均浓度和年均浓度贡献值分别为 0.17ug/m³、0.05ug/m³、0.01ug/m³,占标率分别为 0.03%、 0.03%、 0.02%。达到《环境空气质量标准》(GB3095-2012)及其修改单的二级标准。

$(11) NO_2$

本项目新增污染源正常工况的 NO_2 1 小时浓度、日均浓度和年平均贡献值预测结果见下表所示。

表 6.2-32 正常排放时 NO₂1 小时平均浓度贡献值预测结果表

点名称	浓度类	浓度增量	出现时间	评价标准	占标	是否超
总石物	型	(µg/m^3)	(YYMMDDHH)	(μg/m ³)	率%	标
上赖生	1 小时	0.2	21062507	200	0.1	达标
蔡份	1 小时	0.19	21070807	200	0.1	达标
高平村	1 小时	0.25	21050108	200	0.12	达标
下赖生	1 小时	0.17	21071107	200	0.08	达标
新二村	1 小时	0.1	21091008	200	0.05	达标
顷九	1 小时	0.33	21052308	200	0.17	达标
福隆围	1 小时	0.08	21091008	200	0.04	达标
掘尾	1 小时	0.17	21022808	200	0.08	达标
新团结	1 小时	0.13	21052308	200	0.06	达标
村	ניאיני ז	0.13	21032308	200	0.00	乙你
头围	1 小时	0.11	21052308	200	0.06	达标
团结村	1 小时	0.21	21022808	200	0.1	达标
新洋村	1 小时	0.09	21112908	200	0.04	达标
冯马村	1 小时	0.17	21111508	200	0.08	达标
新兴村	1 小时	0.07	21030108	200	0.03	达标
高平小	1 小时	0.13	21091008	200	0.07	达标
学	- , ,					,
冯马小	1 小时	0.18	21071608	200	0.09	 达标
学						
横沥中学	1 小时	0.11	21111508	200	0.06	达标
网格	1 小时	0.55	21081009	200	0.28	达标

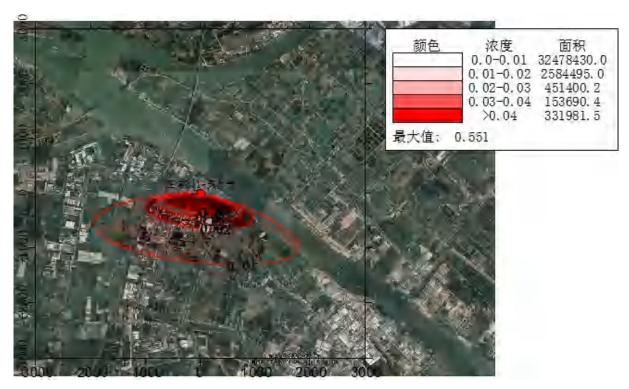


图 6.2-21 NO₂1 小时浓度贡献值分布图(单位: ug/m³)

表 6.2-32 正常排放时 NO₂ 日均浓度贡献值预测结果表

占力粉	浓度类	浓度增量	出现时间	评价标准	占标	是否超
点名称	型	$(\mu g/m^3)$	(YYMMDDHH)	(μg/m^3)	率%	标
上赖生	日平均	0.03	210209	80	0.03	达标
蔡份	日平均	0.04	211008	80	0.05	达标
高平村	日平均	0.07	210721	80	0.09	达标
下赖生	日平均	0.06	211008	80	0.07	达标
新二村	日平均	0.02	211226	80	0.02	达标
顷九	日平均	0.04	210604	80	0.05	达标
福隆围	日平均	0.02	211217	80	0.02	达标
掘尾	日平均	0.01	210604	80	0.02	达标
新团结	日平均	0.01	210604	80	0.01	达标
村		0.01	210004	80	0.01	
头围	日平均	0	210604	80	0.01	达标
团结村	日平均	0.01	210228	80	0.01	达标
新洋村	日平均	0.01	210108	80	0.01	达标
冯马村	日平均	0.02	210330	80	0.03	达标
新兴村	日平均	0	210318	80	0.01	达标
高平小	日平均	0.03	211226	80	0.04	达标
学	H I H	0.03	211220	80	0.04	心你
冯马小	日平均	0.01	210805	80	0.01	达标
学		0.01	210003	00	0.01	X21/N

横沥中学	日平均	0.01	210330	80	0.02	达标
网格	日平均	0.08	210427	80	0.1	达标

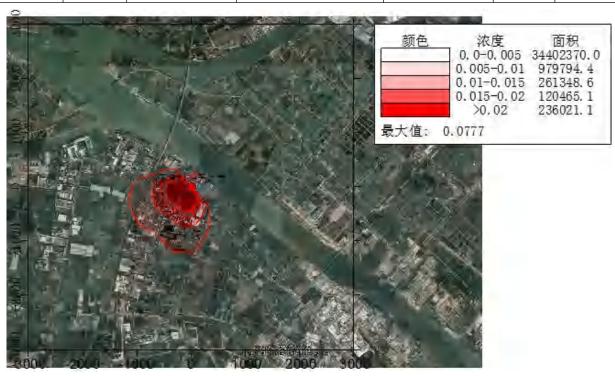


图 6.2-22 NO₂ 日均浓度贡献值分布图(单位: ug/m³)

表 6.2-32 正常排放时 NO₂ 年平均浓度贡献值预测结果表

L 6-71	浓度类	浓度增量	出现时间	评价标准	占标	是否超
点名称	型	(µg/m^3)	(YYMMDDHH)	(μg/m^3)	率%	标
上赖生	年平均	0	平均值	40	0.01	达标
蔡份	年平均	0	平均值	40	0.01	达标
高平村	年平均	0.01	平均值	40	0.04	达标
下赖生	年平均	0	平均值	40	0.01	达标
新二村	年平均	0	平均值	40	0	达标
顷九	年平均	0	平均值	40	0.01	达标
福隆围	年平均	0	平均值	40	0	达标
掘尾	年平均	0	平均值	40	0	达标
新团结 村	年平均	0	平均值	40	0	达标
头围	年平均	0	平均值	40	0	达标
团结村	年平均	0	平均值	40	0	达标
新洋村	年平均	0	平均值	40	0	达标
冯马村	年平均	0	平均值	40	0.01	达标
新兴村	年平均	0	平均值	40	0	达标
高平小	年平均	0	平均值	40	0.01	达标

学						
冯马小 学	年平均	0	平均值	40	0	达标
横沥中学	年平均	0	平均值	40	0	达标
网格	年平均	0.02	平均值	40	0.04	达标

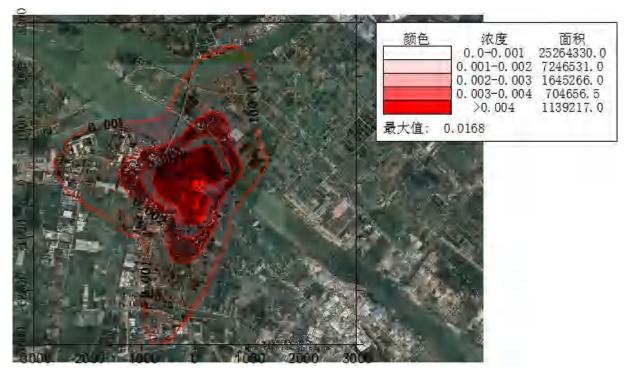


图 6.2-24 NO₂ 年平均浓度贡献值分布图(单位: ug/m³)

由预测结果可知,正常排放下,评价范围内网格点 NO_2 的最大 1 小时浓度、日均浓度和最大年均浓度贡献值分别为 $0.55ug/m^3$ 、 $0.08ug/m^3$ 、 $0.02ug/m^3$,占标率分别为 0.28%、 0.1%、0.04%。敏感点 NO_2 的最大 1 小时浓度、日均浓度和年均浓度贡献值分别为 $0.25ug/m^3$ 、 $0.07ug/m^3$ 、 $0.01ug/m^3$,占标率分别为 0.12%、0.09%、0.04%。达到《环境空气质量标准》(GB3095-2012)及其修改单的二级标准。

6.2.2.7 防护距离计算与评价

根据项目厂区的所有排放源强,采用《环境影响评价技术导则》(HJ 2.2-2018)推 荐模式中的大气环境防护距离模式计算得到以无组织排放源中心为起点控制距离,并结 合厂区平面布置图,确定控制距离的范围,超出厂界以外的范围为项目的大气环境防护 距离。根据计算结果,各污染物排放没有超标点。因此,本项目可以不设置大气环境防 护距离。

6.2.2.8 污染物排放量核算

本项目大气污染物年排放量包括项目各有组织排放源和无组织排放源在正常排放条件下的预测排放量之和。

(1) 有组织排放量核算

本项目无主要排放口,均为一般排放口。

表 6.2-41 大气污染物有组织排放量核算表

r à □	型似异农 核算排放速	核算年排放量				
序号	排放口编号	污染物	(mg/m^3)	率(kg/h)	(t/a)	
		É	三要排放口			
		二氧化硫	18.561	0.036	0.086	
1	G11	氮氧化物	28.120	0.054	0.130	
		颗粒物	12.993	0.025	0.060	
			二氧化硫		0.086	
主要排放	放口合计		氮氧化物		0.130	
			颗粒物		0.060	
		_	一般排放口			
1	G1	氯化氢	0.286	0.017	0.082	
1	Gi	硫酸雾	0.277	0.017	0.080	
2	G2	氨气	0.217	0.009	0.042	
3	G3	氰化氢	0.403	0.020	0.097	
4	G4	非甲烷总烃 (TVOC)	1.634	0.025	0.118	
4	04	颗粒物	7.980	0.120	0.575	
5	G5	铬酸雾	0.016	0.000	0.001	
6	G6	氯化氢	0.088	0.004	0.017	
0	Go	硫酸雾	0.031	0.001	0.006	
7	G7	氨气	0.078	0.004	0.019	
8	G8	氰化氢	0.355	0.018	0.085	
9	G9	氯化氢	0.239	0.012	0.057	
<i>y</i>		硫酸雾	0.141	0.007	0.034	
10	G10	氨气	0.037	0.002	0.011	
			氯化氢		0.157	
一般排产	放口合计		硫酸雾		0.119	
			氨气		0.071	

	氰化氢	0.182
	非甲烷总烃 (TVOC)	0.118
	颗粒物	0.575
	铬酸雾	0.001
	氯化氢	0.157
	硫酸雾	0.119
	氨气	0.071
	氰化氢	0.182
有组织排放总计	非甲烷总烃 (TVOC)	0.118
	颗粒物	0.635
	铬酸雾	0.001
	二氧化硫	0.086
	氮氧化物	0.130

表 6.2-42 大气污染物无组织排放量核算表

	排	产			国家或地方污染物排放	标准		
序号	放口编号	, 污 环 节	污染物	主要污染物防治措施	标准名称	浓度限值 (mg/m³)	年排放 量(t/a)	
			氯化氢		广东省地方标准《大气污染物排	0.2	0.043	
			硫酸雾	供权成年	放限值》(DB44/27-2001)无组 织排放监控浓度限值	1.2	0.042	
1 ,	/	车间	氨气	做好废气 收集措施, 保证废气	《恶臭污染物排放标准》 (GB14554-93)新扩改建二级 标准	1.5	0.022	
		2F	铬酸雾	收集效率; 同时加强 车间抽风		0.006	0.0002	
			氰化氢		广东省地方标准《大气污染物排	0.024	0.004	
			非甲烷 总烃	十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	放限值》(DB44/27-2001)无组 织排放监控浓度限值	4	0.116	
			颗粒物			1	0.638	
			氯化氢	做好废气		0.2	0.002	
		左	硫酸雾	收集措施,	 广东省地方标准《大气污染物排	1.2	0.003	
2	/	/ 间 4F	年 一 间	氰化氢	保证废气 收集效率; 同时加强 车间抽风	放限值》(DB44/27-2001)无组 织排放监控浓度限值	0.024	0.047
2	/	车间	氯化氢	做好废气 收集措施, 保证废气	广东省地方标准《大气污染物排 放限值》(DB44/27-2001)无组 织排放监控浓度限值	0.2	0.007	
3	3 /		氨气	收集效率; 同时加强 车间抽风	《恶臭污染物排放标准》 (GB14554-93)新扩改建二级 标准	1.5	0.010	

			氰化氢		广东省地方标准《大气污染物排 放限值》(DB44/27-2001)无组 织排放监控浓度限值	0.024	0.017		
			氯化氢		广东省地方标准《大气污染物排	0.2	0.022		
	4 /		硫酸雾	做好废气	放限值》(DB44/27-2001)无组 织排放监控浓度限值	1.2	0.013		
4		车 间 6F	氨气	收集措施, 保证废气 收集效率; 同时加强	《恶臭污染物排放标准》 (GB14554-93)新扩改建二级 标准	1.5	0.002		
			铬酸雾	车间抽风	广东省地方标准《大气污染物排	0.006	0.0004		
			氰化氢	—— IHJ 1111/V	放限值》(DB44/27-2001)无组 织排放监控浓度限值	0.024	0.023		
		车 间 7F	硫酸雾	做好废气	广东省地方标准《大气污染物排 放限值》(DB44/27-2001)无组 织排放监控浓度限值	1.2	0.011		
5	/		间	· 间	间	氨气	收集措施, 保证废气 收集效率; 同时加强	《恶臭污染物排放标准》 (GB14554-93)新扩改建二级 标准	1.5
			氰化氢	上 内的加强 车间抽风	广东省地方标准《大气污染物排	0.024	0.005		
			非甲烷 总烃	+ In 1 m \rangle \(放限值》(DB44/27-2001)无组 织排放监控浓度限值	4	0.007		
					无组织排放总计				
					氯化氢		0.075		
					硫酸雾		0.069		
					氨气		0.037		
	无组织	只排放	总计		铬酸雾				
					0.096				
非甲烷总烃									
					颗粒物		0.638		

表 6.2-44 大气污染物年排放量核算表

序号	污染物	年排放量(t/a)
1	氯化氢	0.231
2	硫酸雾	0.189
3	氨气	0.109
4	氰化氢	0.278
5	非甲烷总烃(TVOC)	0.241
6	颗粒物	1.273
7	铬酸雾	0.002
8	二氧化硫	0.086
9	氮氧化物	0.130

当项目运营期间废气处理设施发生故障时而非正常排放,废气处理设施处理效率为 0,生产废气经收集后直接排放,即非正常工况时污染源排放浓度、速率为产生浓度和 速率。非正常排放源强信息见下表。

序号	污染源	非正常 排放原因	污染物	非正常 排放浓度 /(mg/m³)	非正常排 放速率/ (kg/h)	单次持 续时间 /h	年发生频次/次	应对措施
1	G1		氯化氢	2.856	0.171	1	1	
1	G1		硫酸雾	2.766	0.166	1	1	
2	G2		氨气	2.175	0.087	1	1	
3	G3		氰化氢	4.030	0.201	1	1	
4	G4		非甲烷总烃 (TVOC)	16.336	0.245	1	1	応
		废气处理设施,	颗粒物	79.800	1.197	1	1	废气处理
5	G5	施故障导致 废气收集后	铬酸雾	0.159	0.002	1	1	设施检修 后恢复生
6	G6	及气収集后 无治理效果	氯化氢	0.880	0.035	1	1	ロ 恢 复 生 产
0	Go	九佰垤双木	硫酸雾	0.311	0.012	1	1	,
7	G7		氨气	0.779	0.039	1	1	
8	G8		氰化氢	3.547 0.177 1 1		1		
9	G9		氯化氢	2.394	0.120	1	1	
9	<u> </u>		硫酸雾	1.408	0.070	1	1	
10	G10		氨气	0.372	0.022	1	1	

表 6.2-43 项目污染源非正常排放参数表(点源)

6.2.2.9 环境空气影响评价小结

本项目排放的主要污染物包括氯化氢、硫酸雾、氨气、氰化氢、铬酸雾、非甲烷总烃、TVOC、臭气浓度、二氧化硫、氮氧化物、颗粒物、烟气黑度。由估算模型(AERSCREEN)计算结果可知,本建项目污染物正常排放情况下,污染物最大地面空气质量占标率 P_{max} 为 11.13%,项目大气环境影响评价工作为一级评价。本项目所在区域为环境空气达标区域。

通过对大气主要污染物排放量核算,建设项目氯化氢、硫酸雾、氨气、氰化氢、铬酸雾、非甲烷总烃(TVOC)、二氧化硫、氮氧化物、颗粒物排放量分别为 0.231t/a、0.189t/a、0.109t/a、0.278t/a、0.002t/a、0.241t/a、0.086t/a、0.130t/a、1.273t/a。

因此,在做好污染防治措施的管理和维护保养时,本项目排放的大气污染物对评价区域内的大气环境质量影响程度在可接受范围内。

表 5.3-16 大气环境影响评价自查表

	工作内容		10 人 (1)	יאטעייו	V 147			· 攻 目			
评价等	评价等级		一级团				_	二坝日 二级□		三级口	
好所等 级与范	アリ 守纵		纵凹						-	二纵口	
级与犯 围	评价范围		1长=50km	ı 		边长 5~50km□			边	边长=5km☑	
	SO ₂ +NO _x 排放量	≥2	000t/a□			500	~2000t/a□			<500t/a☑	
评价因 子	评价因子	基本污染物(二氧化硫、氮氧 其他污染物(氯化氢、硫酸雾 氢、铬酸雾、非甲烷总烃、					、氨气、氰化 包括			次 PM ₂ 二次 PM	
评价标 准	评价标准	国家村	示准☑	坩	也方材	示准口		附录	D 🗹	其他标准团	
	环境功能区	_	·类区□			_ <u></u>	类[<u>X</u>	一类区	和二类[Z _□
现状评	评价基准年					(2	202	21)年			
一	环境空气质量现状 调查数据来源	长期例	行监测数□			拿部门	发 図	布的数据		·充监测	V
	现状评价		达标						不达标区	<u> </u>	
污染源 调查	调查内容	本项项	本项目正常排放源☑ 拟替代 本项项目非正常排放 的污染 源☑现有污染源□ 源□				其他在建、 污染		区域汽		
	预测模型	AERMO D	ADM S	AU	JSTA 00	L20	E	EDMS/AE DT	CALPU FF	网格 模型	其他口
	预测范围	边长≥50km □ 边					☆ 5~50km □			边长= ☑	
	预测因子	气、氰	酸雾	. 硫酸雾、氨 雾、非甲烷总 流、氮氧化物、 P)		总		l括二次 PM 包括二次 P			
大气环境影响	正常排放短期浓度贡 献值	C _{本项目} 最大占标率≤100% ☑				C 本项目最大占标率>100% □					
预测与 评价	正常排放年均浓度贡	一类区	C _{本项目} 最	大占	标率:	≤10%		□ C 本项目最大占标率>10%□			
	献值	二类区	C _{本项目} 最力	大占村	标率	≤30%	$ \checkmark $	C _{本项目}	最大占标率	图>30%	
	非正常排放 1h 浓度 贡献值	非正'	常持续时 [.] (1)h	长	С	非正常占	标 ☑	率≤100%]	C _{非正常} 占林	示率>10	0% □
	保证率日平均浓度和 年平均浓度叠加值		C _{叠加} ì	达标 [√				C _{叠加} 不达材	示□	
	区域环境质量的整体 变化情况		k≤ -2	20% [K> -20%		
环境监测计划							无监	≦测□			
	环境质量监测		监测因	子:				监测。	点位	无监	测团
立立なか	环境影响	可以接受☑不可以接受□									
评价结	大气环境防护距离				距	() [- 界	¹ 最远() m	1		
论 	污染源年排放量	SO ₂ :	(0.086)	NO _x	: (0	.130)	t/a	颗粒物:	(1.273)	VOC	S:

		t/a	t/a	(0.241) t/a
注: "□	"为勾选,填"√"; "()	"为内容填写项		

6.2.3 污染物排放量核算

6.3运营期水环境影响评价

6.3.1 水污染物产生及排放情况

建设项目完成后,外排的废水包括生活污水和生产废水,生活污水 33.6 吨/日,生产废水 237.28 吨/日。

6.3.2 污水处理方案

1、生活污水处理方案

本项目在三角镇生活污水处理厂纳污范围内,生活污水经三级化粪池预处理达广东省地方标准《水污染物排放限值》(DB/26-2001)第二时段三级标准后,纳入三角镇生活污水处理厂处理,尾水水质达广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段一级标准与《城镇污水处理厂污染物排放标准》(GB18918-2002)一级 A标准较严者后排入洪奇沥水道。

2、生产废水处理方案

项目技改扩建后,全厂区生产废水包括前处理废水、综合废水、含铬废水、电镀镍废水、含氰废水、含银废水、混排废水、化学镍废水等8股,分别经专置污水管网排入中山市三角镇高平污水处理有限公司进行处理,尾水水质达广东省《电镀水污染物排放标准》(DB44/1597-2015)表1中珠三角排放限值后,其中60%作为回用水经中水回用系统处理后由专用管道返回给金美达公司作为生产用水使用,另外40%的尾水经高平污水处理有限公司排污口最终排入洪奇沥水道。

表 6.3-1 废水类别、污染物及污染治理设施信息表

						污染治理设施	奄		排放口设	
序号	废水类 别 a	污染物 种类 b	排放去向。	排放规律 d	污染治 理设施 编号	污染治理 设施名称	污染治理 设施工艺	排放口 编号	置是否符 合要求	排放口 类型
1	生活污水	COD _{Cr} 、BOD ₅ 、 SS、NH ₃ -N	城市污水处理厂	间断排放	/	三级化粪池	三级化粪池	DW001	/	√企业总排□雨水排放□清净下 水排放□温排水排放□车间或 车间处理设施排放口
2	前处理 废水	рН、COD _{Cr}	工业废水集中处理厂	间断排放,排放 期间流量稳定	/	前处理废 水收集池		DW002	/	√企业总排□雨水排放□清净下 水排放□温排水排放□车间或 车间处理设施排放口
3	电镀镍废水	pH、CODcr、 总 Ni	工业废水集中处理厂	间断排放,排放 期间流量稳定	/	电镀镍废水收集池		DW003	/	√企业总排□雨水排放□清净下 水排放□温排水排放□车间或 车间处理设施排放口
4	含氰废水	pH、CODer、 总 Cu、总 Au、 总 P、CN一、 总 Ag	工业废水集 中处理厂	间断排放,排放 期间流量稳定	/	含氰废水收集池	泵送至高 平污水处 理有限公 司进行处	DW004	/	√企业总排□雨水排放□清净下 水排放□温排水排放□车间或 车间处理设施排放口
5	含银废水	pH、CODcr、 总 Ni	工业废水集中处理厂	间断排放,排放 期间流量稳定	/	含银废水 收集池	理	DW005	/	√企业总排□雨水排放□清净下 水排放□温排水排放□车间或 车间处理设施排放 √
6	化学镍 废水	pH、CODcr、 总 Ag	工业废水集中处理厂	间断排放,排放 期间流量稳定	/	化学镍废 水收集池		DW006	/	√企业总排□雨水排放□清净下 水排放□温排水排放□车间或 车间处理设施排放口
7	含铬废水	pH、CODcr、 总 Cr ⁶⁺	工业废水集 中处理厂	间断排放,排放 期间流量稳定	/	含铬废水 收集池		DW007	/	√企业总排□雨水排放□清净下 水排放□温排水排放□车间或

						污染治理设施	施		排放口设		
序 号	废水类 别 a	汚染物 种类 b	排放去向。	排放规律 d	污染治 理设施 编号	污染治理设施名称	污染治理 设施工艺	排放口 编号	置是否符 合要求	排放口 类型	
										车间处理设施排放口	
8	综合废水	pH、CODcr、 总 P	工业废水集中处理厂	间断排放,排放 期间流量稳定	/	综合废水收集池		DW008	/	√企业总排□雨水排放□清净下 水排放□温排水排放□车间或 车间处理设施排放口	
9	混排废 水	pH、CODcr、 总 Ni、总 Cu、 总 Au、总 P、 CN-	工业废水集中处理厂	间断排放,排放 期间流量稳定	/	混排废水 收集池		DW009	/	√企业总排□雨水排放□清净下 水排放□温排水排放□车间或 车间处理设施排放口	

表 6.3-2 废水间接排放口基本情况

بد	序 排放口编号 号	排放口地理坐标ª		废水排	LILAL	LII. S.L.		受纳污水处理厂信息				
		经度	纬度	放量/ (万 t/a)	排放 去向	排放 规律	间歇排放时段	名称 b	污染物种 类	国家或地方污染 物排放标准浓度 限值/(mg/L)		
		113°28'11.75"					-	三角镇生	$\mathrm{COD}_{\mathrm{Cr}}$	40		
1	DW001		°28'11.75" 22°42'33.88"	0.216	.216 城市污水处 理厂	间断排放	/	一	BOD ₅	10		
	D 11 001			0.210		1 3 - 3 1 3 11 79 2	,	理厂	SS	10		
									NH ₃ -N	5		
	2 DW002	112020112 4511 2204212 4 5211		112020112 4511 2204212 4 5211		1.49	工业废水集	间断排放,排放	当水量达到收集	高平污水 处理有限	рН	6-9
		113°28'12.45"	28'12.45" 22°42'34.72"		中处理厂	期间流量稳定	池特定高度自动 泵送	公司	CODcr	80		

مدر		排放口地	理坐标 a			LIL S.I.		受纳污水处理厂信息		
字 号	排放口编 号	经度	纬度	放量/ (万 t/a)	去向	排放 规律	间歇排放时段	名称 b	污染物种 类	国家或地方污染 物排放标准浓度 限值/(mg/L)
3	DW003	113°28'12.45"	22°42'34.72"	0.71	工业废水集中处理厂	间断排放,排放 期间流量稳定	当水量达到收集 池特定高度自动 泵送		总 Cu	0.5
4	DW004	113°28'12.45"	22°42'34.72"	0.81	工业废水集中处理厂	间断排放,排放 期间流量稳定	当水量达到收集 池特定高度自动 泵送		总 Zn	1.0
5	DW005	113°28'12.45"	22°42'34.72"	0.76	工业废水集中处理厂	间断排放,排放 期间流量稳定	当水量达到收集 池特定高度自动 泵送		总 Cr	0.5
6	DW006	113°28'12.45"	22°42'34.72"	0.24	工业废水集中处理厂	间断排放,排放 期间流量稳定	当水量达到收集 池特定高度自动 泵送		总 Ni	0.5
7	DW007	113°28'12.45"	22°42'34.72"	2.88	工业废水集中处理厂	间断排放,排放 期间流量稳定	当水量达到收集 池特定高度自动 泵送		总 P	1.0
其中	DW008	113°28'12.97"	22°42'33.03"	0.0243	综合废水管 网	间断排放,排放 期间流量稳定	/	综合废水 管网	总银	0.1

表 6.3-3 废水污染物排放执行标准

序号	排放口编号	污染物种类	国家或地方污染物排放标准及其他按规定商定的	排放协议。
厅 与		15条物件关	名称	浓度限值/(mg/L)
1	1 DW001 COD _{Cr}		广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段三	500

		BOD ₅	级标准	300
		SS		400
		NH ₃ -N		
		рН		4-8
2	DW002	COD_{Cr}		800
		总磷		100
		рН		>4
3	DW003	CODcr		150
		总 Ni		300
		pН		6-9
4	DW004	CODer		300
4	DW004	总 Ni		150
		总 Zn		1.0
		рН	高平污水处理厂进水水质要求	3-6
5	DW005	CODcr		100
		总 Cr		450
		pН		4-9
		CODcr		400
		总 Cu		100
6	DW006	总 Ni		150
		总 Zn		80
		总 Cr		150
		总 P		100
7	DW007	рН		4-8

		CODer		250
		总 Cu		150
		总 Zn		150
		总 P		80
		总银		0.1
8	DW008	总 Ag	含银废水预处理系统出水进入综合废水管网处	0.1

表 6.3-4 环境监测计划及记录信息表

序号	排放口编 号	污染物名称	监测设 施	自动监测设施 安装位置	自动监测设施的安 装、运行、维护等相 关管理要求	自动监测 是否联网	自动监测 仪器名称	手工监测 采样方法 及个数 a	手工监 测频次 b	手工测定 方法 c
1	生活污水	COD _{Cr} 、BOD ₅ 、SS、 NH ₃ -N	手工	/	/	/	/	/	/	/
2	前处理废 水	pH、COD _{Cr}	手工	/	/	/	/	/	/	/
3	电镀镍废水	pH、CODcr、总 Ni	手工	/	/	/	/	/	/	/
4	含氰废水	pH、CODcr、总 Cu、 总 Au、总 P、CN一、 总 Ag	手工	/	/	/	/	/	/	/
5	含银废水	pH、CODcr、总 Ni	手工	/	/	/	/	/	/	/
6	化学镍废 水	pH、CODcr、总 Ag	手工	/	/	/	/	/	/	/
7	含铬废水	pH、CODcr、总Cr ⁶⁺	手工	/	/	/	/	/	/	/
8	综合废水	pH、CODcr、总 P	手工	/	/	/	/	/	/	/
9	混排废水	pH、CODcr、总 Ni、 总 Cu、总 Au、总 P、 CN-	手工	/	/	/	/	/	/	/

6.3.3 水环境影响评价小结

项目所在厂区将不设配套污(废)水处理终端设施,不对外直接排污。项目生活污水及生产废水经其所属污水处理厂深化处理达标后排入纳污河道,对纳污水体即洪奇沥水道的水质影响不大。

表 6.3-5 地表水环境影响评价自查表

		4X 0.3-3	评价目登表	•				
I	作内容	自查项目						
	影响类型		水污染影响型√	; 水文要素	影响型 □			
		饮用水水源保护区	□;饮用水取水口	□;涉水的自然保护区 □;涉水的风景名				
	水环境保	胜区 □; 重要湿地	□; 重点保护与珍					
П,	护目标	自然产卵场及索饵场	6、越冬场和洄游	-场和洄游通道□;天然渔场等渔业水体 □;水产种质				
影响			资源保护	户区□; 其他				
识	影响途径	水污染影	响型√		水文要素影响型			
别	影响述位	直接排放 🗅 ; 间接	排放√; 其他□	水温	□;径流 □;水域面积 □			
		持久性污染物√; 有	毒有害污染物√;	Lor				
	影响因子	 非持久性污染物√; ₁	oH 值√; 热污染	水温 ロ; フ	水位(水深) □; 流速 □; 流量			
		□; 富营养化 [□; 其他 □			
		水污染影			水文要素影响型			
评	价等级	一级 🗅; 二级 🗅; 三						
		√ × × × × × × × × × × × × × × × × × × ×		_	级 🗅; 二级 🗅; 三级 🗅			
		调查项			数据来源			
	区域污染源			排污许可证	正口;环评口;环保验收口;既			
		己建 □; 在建 □;	拟替代的污染	有实测 □; 现场监测 □; 入河排放口数据				
		拟建□; 其他 □	拟建□;其他□ 源□		□; 其他□			
			期		数据来源			
	受影响水	丰水期 □; 平水期						
	体水环境	 冰封期 □春季 □;		生态环境保护主管部门 □;补充监测 □; 其他 □				
	质量	冬季						
	区域水资							
现状	源开发利	 未开发	☆ □: 开发量 40%	6以下 □;开发量 40%以上 □				
调	用状况		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
查	,,,,,,,	调查时	 期		数据来源			
	水文情势	丰水期 □; 平水期	□; 枯水期 □;					
	调查			 水行政主管	舎部门□;补充监测□;其他□			
	7.4—	冬季		7,14,7				
				监测因	11. 37 11/10 77 13 1 13			
		监测时	期	子	监测断面或点位			
	补充监测	丰水期 □; 平水期						
		 冰封期 □春季 □;		()	监测断面或点位个数()个			
		冬季						
评状	评价范围			· . 河口及近	上 岸海域:面积()km²			
				·				

I	 作内容	自査项目							
	评价因子	()							
	评价标准	河流、湖库、河口: 【类 □; Ⅱ类 □; Ⅲ类; Ⅳ类 □; Ⅴ类 □ 近岸海域: 第一类 □; 第二类 □; 第三类 □; 第四类 □ 规划年评价标准()							
	评价时期	丰水期 □; 平水期 □; 枯水期 □; 冰封期 □ 春季 □; 夏季 □; 秋季 □; 冬季 □							
	评价结论	水环境功能区或水功能区、近岸海域环境功能区水质达标状况: 达标;不达标 □ 水环境控制单元或断面水质达标状况: 达标 □; 不达标 □ 水环境保护目标质量状况: 达标 □; 不达标 □ 对照断面、控制断面等代表性断面的水质状况: 达标 □; 不达标 □ 成泥污染评价 □ 水资源与开发利用程度及其水文情势评价 □ 水环境质量回顾评价 □ 流域(区域)水资源(包括水能资源)与开发利用总体状况、生态流量管理要求与现状满足程度、建设项目占用水域空间的水流状况与河湖演变状况 □ 依托污水处理设施稳定达标排放评价√	达区不标 □						
	预测范围	河流: 长度() km; 湖库、河口及近岸海域: 面积() km²							
	预测因子	()							
影响	预测时期	丰水期 □; 平水期 □; 枯水期 □; 冰封期 □ 春季 □; 夏季 □; 秋季 □; 冬季 □ 设计水文条件 □ 建设期 □; 生产运行期 □; 服务期满后 □							
预测	预测情景	正常工况 □; 非正常工况 □ 污染控制和减缓措施方案 □ 区(流)域环境质量改善目标要求情景 □							
	预测方法	数值解 □:解析解 □;其他 □ 导则推荐模式□:其他 □							
	水污染控 制和水环 境影响减 缓措施有 效性评价	区(流)域水环境质量改善目标 口;替代削减源 口							
影响评价	水环境影响评价	排放口混合区外满足水环境管理要求 □ 水环境功能区或水功能区、近岸海域环境功能区水质达标 □ 满足水环境保护目标水域水环境质量要求 □ 水环境控制单元或断面水质达标 □ 满足重点水污染物排放总量控制指标要求,重点行业建设项目,主要污染 满足等量或减量替代要求 □ 满足区(流)域水环境质量改善目标要求 □ 水文要素影响型建设项目同时应包括水文情势变化评价、主要水文特征值							

I	作内容				Į.	自查证	页目			
		价、生态流量符合性评价 □								
		对于新设或调整入河(湖库、近岸海域)排放口的建设项目,应包括排放口设置								
		的环境合理性评价 🗆								
		满足生态保护红线、水环境质量底线、资源利用上线和环境准入清单管理要求 🗆								
		污染	物名称		排放量/(t/a)			排放浓度/(n	ng/L)	
			COD	Cr	2.52			40		
		生活	BOD) ₅	1.512			10		
		污水	SS		1.512			10		
	 汚染源排		NH ₃ -	N	0.252			5		
	放量核算		COD	cr	6.556			80		
			总 C	u	0.041			0.5		
		生产	· 总 Zn		0.082			1.0		
		废水	总 C	r	0.041		0.5			
			总 Ni		0.041		0.5			
			总 F)	0.082	1				
	 替代源排	污染源名称			排污许可证编号		杂物名	排放量	排放浓度/	
	放情况						称	/(t/a)	(mg/L)	
	W IH I/L	()			()	()		()	()	
	生态流量	<u> </u>				; 鱼类繁殖期() m³/s; 其他() m³/s				
	确定				立: 一般水期() m					
	 环保措施	污水处	理设施	√;		生态流量保障设施 🗅 ; 区域削减 🗅 ; 依托其				
	, ,,,,,,,,,	他工程技					√; 其他			
防					环境质量	/		污染		
防治措施	上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上 上	监测プ		手z	动口;自动口;无监治	则√		手动√; 自动√		
施施		监测点			()			(1、生活污水		
		监测员	室测因子 ()			$(1, COD_{Cr}, BOD_5, SS, NH_3-N)$				
	污染物排									
	放清单				-n. 12	1 -		<u> </u>		
· · · · · · · · · · · · · · · · · · ·	P价结论	N 1 1 13			可以接受					
	注: "□	"为勾选	项,可	打√	;"()"为内容填气	写项:	: "备注	"为其他补充内	内容。	

6.4运营期噪声影响预测与评价

6.4.1 主要噪声源

本项目噪声源主要是生产设备、各类风机、各类泵等,噪声源强及治理措施如下表 所示。

序号 噪声等级 dB(A) 排放特征 防治措施 机械名称 电镀槽电机 1 65-70 合理布局, 安装消声减 风机 2 75-80 振降噪设施,墙体隔音, 3 泵 70-80 连续 加强厂界绿化,加强员 4 抽风机 70-80 工防护, 文明生产等 空压机 5 75-80

表 6.4-1 生产设备噪声值(离声源 1m 处)

项目采取的噪声治理措施有:

- (1) 从噪声源入手,在满足工艺要求的前提下,选择低噪声的设备,主要生产设备均布置在室内,对噪声较大的设备基础进行减振防噪处理;
- (2) 在设备、管道设计中,注意防震、防冲击,以减轻振动噪声,并注意改善气体输流时流畅状况,以减轻空气动力噪声;
 - (3) 对风机、泵等除设置减振基础外,再设置隔音罩进一步降低噪声;
 - (4) 加强噪声设备的维护管理,避免因不正常运行所导致的噪声增大。

6.4.2 预测模式

根据《环境影响评价技术导则声环境》(HJ2.4-2009)的要求,结合建设项目噪声源和环境特征,预测模式采用点声源处于半自由空间的几何发散模式。预测过程中考虑厂房建筑物的屏障和空气吸收作用。

(1) 对室外噪声源主要考虑噪声源的几何发散衰减及环境因素衰减:

$$L_2 = L_1 - 20 \log (r_2/r_1) - \Delta L$$

式中:

 L_2 ——点声源在预测点产生的声压级,dB(A);

 L_1 ——点声源在参考点产生的声压级,dB(A);

 r_2 ——预测点距声源的距离,m;

 r_1 ——参考点距声源的距离,m;

 ΔL ——各种因素引起的衰减量(包括声屏障、空气吸收等引起的衰减量),dB(A)。

(2) 对室内噪声源采用室内声源噪声模式并换算成等效的室外声源:

如已知声源的倍频带声功率级(从63Hz到8kHz标称频带中心频率的8个倍频带),预测点位置的倍频带声压级 $L_p(r)$ 可按公式(A.1)计算:

$$L_n = L_e + 10 \log \left(\frac{Q}{4\pi r^2} + \frac{4}{R} \right)$$

$$L_w = L_n - (TL + 6) + 10 \log S$$

式中:

 L_n —室内靠近围护结构处产生的声压级,dB;

 L_{w} —室外靠近围护结构处产生的声压级,dB;

 L_{e} 声源的声压级,dB:

r——声源与室内靠近围护结构处的距离, m;

R——房间常数, m^2 ;

Q——方向性因子;

TL——围护结构的传输损失, dB;

S——透声面积, \mathbf{m}^2 。

(3) 对两个以上多个声源同时存在时,其预测点总声压级采用下面公式:

$$L_{eq} = 10\log\left(\sum 100.1L_i\right)$$

式中:

 L_{eq} 一预测点的总等效声级,dB(A);

 L_i ——第 i 个声源对预测点的声级影响,dB(A)。

(4)为预测项目噪声源对周围声环境的影响情况,首先预测噪声源随距离的衰减,然后将噪声源产生的噪声值与区域噪声背景值叠加,即可以预测不同距离的噪声值。叠加公式为:

$$L_{eq} = 10 \log (10^{L1/10} + 10^{L2/10})$$

式中:

 L_{eq} 噪声源噪声与背景噪声叠加值:

 L_1 ——背景噪声;

 L_2 ——噪声源影响值。

6.4.3 评价标准

项目厂界噪声执行《工业企业厂界环境噪声排放标准》(GB12348-2008)中的 2 类标准,即昼间 60dB,夜间 50dB;项目最近敏感点高平村执行《声环境质量标准》(GB3096-2008)中的 2 类标准,即昼间 60dB,夜间 50dB。

6.4.4 预测结果与分析

根据前述工程分析可知,建设项目的主要噪声源主要为一般电镀槽电机、风机、泵、抽风机、熔锡炉、空压机等设备运行过程中产生的噪声。采取隔声室、减震片消声、吸声等控制措施后,基本可降低 30dB(A)。

表 6.4-2 主要噪声源环境噪声影响单位: dB(A)

评价 位置	污染源名称	叠加源强 dB(A)	降噪措施衰减 量 dB(A)	衰减距离 (米)	贡献值 dB(A)	达标 情况
	电镀槽电机	70	30			
	风机	80	30			
厂界东 侧	泵	80	30	5	42.25	达标
100	抽风机	80	30			
	空压机	80	30			
	电镀槽电机	70	30			
	风机	80	30			
厂界南 侧	泵	80	30	15	32.71	达标
127	抽风机	80	30			
	空压机	80	30			
	电镀槽电机	70	30			
	风机	80	30			
厂界西 侧	泵	80	30	43	23.56	达标
D/4	抽风机	80	30			
	空压机	80	30			
	电镀槽电机	70	30			
	风机	80	30			
厂界北 侧	泵	80	30	24	28.63	达标
NA.	抽风机	80	30			
	空压机	80	30			

综上所述,项目厂区的噪声设备在所有测点均能达标排放。对周围不会造成明显影响;建议做好隔声、减震、消声等防治措施,可以认为项目的设备噪声不会周围环境造成大的影响,也不会对项目周围声环境质量产生明显影响。

6.5运营期固体废物影响分析

6.5.1 项目固体废物产生种类及处理措施

本项目运营期产生的固体废物主要包括:不合格产品、一般原材料废包装、危险化学品废包装、废滤芯、废槽渣、废液、废 RO 反渗透膜、废离子交换树脂和生活垃圾等。危险化学品废包装、废滤芯、废槽渣、废液、废离子交换树脂等危险废物定期交由具有相关危险废物经营许可证的单位处置;废 RO 反渗透膜由设备保养公司更换并回收;不合格产品、一般原材料废包装交废旧物资回收公司处理;生活垃圾交环卫部门处理。

6.5.2 固体废物的危害分析

生产固体废物如果疏于管理,将其随意丢弃和堆放,不仅占用地方,影响企业景观,而且长期经过雨水浸淋,固体废物中的有害物质会发生迁移,不仅污染堆放地的土壤环境,还有可能随雨水径流肆意漫流,进入周围水体,污染水环境。有些固体废物可能还会发生腐烂,产生恶臭或散发其他气态污染物,污染大气环境。特别是如果工业危险废物中的有害物质发生泄露、迁移,进入周围水体、大气和土壤环境,将产生严重的危害。

6.5.3 危险废物公路运输事故危害分析

危险废物公路运输的风险除具有普通货物风险即货物破坏损失、间接经济损失、延 误时间、阻塞交通及人员伤亡等外,还会对周围生态环境造成巨大的影响,主要表现在 危险废物的泄漏会污染周围的环境空气、附近江河水体、土壤尤其是农田耕地等,而且 要消除这些影响必需要各级政府各部门的协作和合作才能完成,需要消耗大量的人力、 物力、财力。此外,有些较为恶劣的影响很难消除,对环境危害很大,也将不可避免的 对周边地区人群的健康和社会发展带来长期的危害。

6.5.4 固体废物污染控制分析

- (1)项目在生产过程中产生的不合格产品、一般原材料废包装交废旧物资回收公司处理。
 - (2) 纯水制备系统废物由设备保养公司更换并回收。
- (3) 危险化学品废包装、废滤芯、废槽渣、废液、废离子交换树脂等危险废物定期交由具有相关危险废物经营许可证的单位处置。
- (4) 生活垃圾: 生活垃圾交环卫部门定期清理,统一处理,并对垃圾堆放点进行 361

消毒, 杀灭害虫, 以免散发恶臭, 孽生蚊蝇。

同时,必须加强固体废弃物在堆放、运输过程中的监督管理,不能随意堆放,以免 随地表水流入纳污水域造成污染,危险废物要及时运出,避免堆放时间过长,减少对环 境的影响。

经上述处理办法处置后,该项目产生的固体废物不会对周围环境产生不良的影响。此外,危险固体废物堆场的污染防治措施要求:

- (1) 危险固废临时储存设施单独设立,不得与一般固废储存区和危险固废储存区 设置在一起。
- (2) 危险固废储存区应根据不同性质的危废进行分区堆放储存,存储区必须严格按照《危险废物贮存污染控制标准》(GB18597-2001)及其 2013 修改单的要求建设和维护使用;对堆放间,建设单位对堆放间进出口设置 0.2m 高的墁坡,并对墙体及地面做防腐、防渗措施,地面基础必须防渗,防渗层为至少 1 m 厚粘土层(渗透系数≤10⁻⁷cm/s),或 2 mm 厚高密度聚乙烯,或至少 2mm 厚的其它人工材料,渗透系数≤10⁻¹⁰cm/s;衬里要能够覆盖废物或其溶出物可能涉及到的范围;衬里材料与堆放的废物相容,不会对地下水产生污染;泄漏事故处理时会有地面清洗废水,故建设单位还应设置排水收集系统,引至应急事故池,则泄漏的化学品及事故处理废水不会渗入地下而污染地下水。
- (3)建设单位必须严格遵守有关危险废物有关储存的规定,建立一套完整的管理体制,危险固废应按广东省《危险废物转移联单管理办法》做好申报转移记录。

根据建设单位提供资料,企业在 6 楼楼顶设置危废暂存库,用地面积约 140m²。危废暂存库做好防风、防雨、防晒、防渗措施,并严格按照上述方法妥善处理生产过程中产生的固体废物。因此,本项目所有的固体废物建设单位通过合理有效的处置途径和安全可靠的堆存措施,只要做到严格执行,项目产生的固体废物对周边环境影响不大。

6.5.5 危险废物转移污染控制分析

为加强对危险废物转移的有效监督,必须严格按照《中华人民共和国固体废物污染环境防治法》、《危险废物转移联单管理办法》、《广东省实施<危险废物转移联单管理办法>规定》、《广东省固体废物污染环境条例》及《广东省危险废物经营许可证管理暂行规定》等有关规定,实施危险废物转移联单制度,实施全过程严格管理,确保危险废弃物的转移过程的安全可靠,减少运输过程中的二次污染和可能造成的环境风险,

因此,本评价提出以下措施:

- ①项目业主、危险废物处理单位应会同公路管理部门及公安部门建立运载危险废物车辆上路申报审批制度,对危险废物运载车辆检查批准后指定其通行路线和时间,危险废物运输车辆应配备 GPS 全球卫星定位系统,对运输车辆和通行路线进行监控,确保危险废物运输的安全,防止污染事故的发生。
- ②危险废物的运输应严格按照危险废物管理规定进行运输,应建立专业化的收运队 伍和专用运输车辆,所有运输车辆均应具备危险品运输许可证,运输全程使用 GPRS 系 统监控管理。应严格培训持证上岗的驾驶人员与押运人员,保证运输途中的安全以及应 对突发事件,能最大限度减少所运输废物对环境可能产生的危害。
 - ③遇暴雨、大雾等恶劣天气,应禁止运载危废车辆通行。
- ④加强对驾驶员和押运员的交通安全教育和管理,司机和押运员都应经过危险废物运输培训合格、并持证上岗,禁止酒后开车、无证开车、违规超车,减少因交通事故而导致的污染事故及人员伤亡。
 - ⑤危险废物运输车辆应配备相应的消防器材和捆扎、防水、防散失等器具。
- ⑥在运输过程中,如果发生事故,应立即通知有关部门采取应急行动,在应急队伍未来到之前,可以根据经验采取应急措施。

6.6运营期地下水环境影响评价

6.6.1 水文地质概况

1、地质概况

- (1) 高平工业区在大的地貌单元上位于珠江三角洲平原,地形平坦。水系主要有北东侧的洪奇沥水道、北西侧的黄沙沥水道,南部的南洋滘水道,以及近南北向的连接北面黄沙沥水道、洪奇沥水道与南部的南洋滘水道的石基河、高沙涌、水字号涌、福龙涌等多条河涌。
- (2) 高平化工区所在区域地质构造位置处在北东东向的新会向斜(盆地)的北东边缘外缘,北面距离近东西向的顺德断裂约8km,东南距离北东东向的古井——万顷沙断裂约6km,属于相对稳定地块。高平化工区附近区域大面积分布第四系海陆交互相沉积的松散层,主要土性有淤泥、粘土及砂土等,基底岩性除新会向斜由白垩系红色岩层组

成外,新会向斜的东侧和北侧以下古生界的斜长片麻岩与石英岩为主,局部为燕山期花岗岩。

- (3) 本次勘查工作区的地层按成因分为:
- ①人工填土层: 厚度 1.10~3.20m, 顶面标高 1.384~1.755m, 由粉细砂及粉质粘土组成:
- ②第四系河流、滨海相松散沉积层: 厚度 41.00~45.10m, 顶面标高-1.455~0.631m, 土性为淤泥质粉砂、淤泥质土、粘土、中粗砂及砾砂等。其中②-1 淤泥质粉砂、淤泥质土 (局部夹有薄层粉砂或中粗砂) 厚度为 22.40~26.40m, 顶面标高-1.455~0.631m; ②-2 粘土厚度为 10.63~12.80m, 顶面标高 23.845~-25.77m; ②-3 底部中粗砂及砾砂厚度为 5.40~6.40m, 顶面标高-34.375~-37.62m。
- ③基岩为下古生界的强风化斜长片麻岩,仅一处钻孔揭露到,揭露厚度 0.40~1.90m,顶面标高-40.37m。

此外,根据收集到的资料,工作区基岩还有白垩系红色粉砂岩或者燕山期的中粗粒花岗岩。

2、地下水概况

(1) 地下水类型

根据收集到的区域水文地质资料,规划区及周边主要含水层类型为第四系松散岩类孔隙水、上第三系红层岩类裂隙水以及块状岩类裂隙水等三种类型。

(2) 地下水补径排特征

勘查区地下水的补给主要有:大气降水渗入补给;河流和河涌两侧岸边地带,丰水季节和涨潮期间,河水位稍高于地下水位,河水周期性地补给地下水。

勘查区属珠江三角洲前缘和滨海平原,水力坡度很和缓,相应的地下水流缓慢。地下水总体迳流方向大致与水道主要水流方向相同,由北西向南东汇流,向珠江口排泄,靠近水道和河涌的地下水则随着水位降落周期性的排泄。

勘查区地下水自然排泄除随着水道、河涌水位降落周期性的排泄外,部分则消耗于 蒸发和植物蒸腾。

3、包气带及深层地下水上覆地层防污性能

场地包气带以第四系河流、滨海相松散沉积层为主,部分地段包含人工填土层,其中沉积层主要为淤泥质粉砂、淤泥质土,岩土层厚度 22.40~26.40m,岩土层渗透系数 364

3.76×10⁻⁸~1.06×10⁻⁶cm/s,透水性极差,根据环境水文地质勘察期间,钻孔钻探记录,在穿透过程中层有喷钻现象发生,说明该土层对下部气体(如甲烷等)密封性较好,也表面该层对地表水和污染物隔离能力较强;场地部分地段存在人工填土层,岩土层厚度1.10~3.20m,由粉细砂及粉质黏土组成,由于多为新近填土,故透水性一般较好,但建设过程中,通常地基下第一岩土层多为天然土层,有填土的情况下,也需夯实,渗透性会大大降低,一般可小于1.0×10⁻⁴cm/s。

高平工业区环境水文地质图

6.6.2 地下水环境影响预测与评价

6.6.2.1 地下水污染预测情景设定

正常工况下,本项目地下水污染防治措施应遵循"源头控制,分区防治,污染监控、风险应急"的原则。项目地下水污染防治措施均为较为成熟的技术,同时可满足 GB16889、GB18599 等相关标准防渗效果要求,因此在正常状况下,项目基本不会对地下水环境产生较大影响。

本次假设非正常工况下厂区发生泄漏导致污染物通过包气带进入地下水,导致地下水遭受污染,在此状况下预测污染物对地下水造成的影响。由于项目药液储存区、危险废物暂存室发生泄漏后相对易发现;项目废水收集池相对集中,进水浓度较高,且防渗层发生破损较难发现,对地下水环境影响相对较大。因此,设定以下污染物泄漏情景:废水收集池防渗层发生破裂后长时间未进行处理,渗滤液连续不断渗入地下水含水层系统中。根据废水污染物产生情况及毒性,以及《地下水质量标准》(GB/T14848-2017),选取化学需氧量、铜、镍、氰化物作为预测因子。由前述章节,污染物 CODcr、氰化物、铜、镍的初始浓度选取各股废水中相应指标总和,如表下表所示。

 污染物
 废水量
 CODer
 CN 镍
 铜

 产生量(kg/d)
 273.16m³/d
 32.2
 2.2
 1.9
 0.09

表 6.6-1 本项目地下水渗漏主要污染物产生情况

6.6.2.2 预测模型概化及参数选取

依据《环境影响评价技术导则(地下水环境)》(HJ610-2016)的要求,结合本期工程场地水文地质条件和潜在污染源特征,地下水环境影响预测采用一维稳定流动二维水动力瞬时注入示踪剂模型。其解析解如下式所示:

$$C(x, y, t) = \frac{m_{M/M}}{4\pi n \sqrt{D_{L}D_{T}t}} e^{-\left[\frac{(x-ut)^{2}}{4D_{L}t} + \frac{y^{2}}{4D_{T}t}\right]}$$

式中:

x, v—计算点处的位置;

t—时间, d;

C(x, y, t)—t 时刻 x, y 处的示踪剂浓度,mg/L;

M—承压含水层的厚度,m

 m_M —瞬时注入的示踪剂质量, g;

u—水流速度,m/d;

n—有效孔隙度, 无量纲:

 D_L —纵向弥散系数, m^2/d ;

 D_T —横向 y 方向的弥散系数, m^2/d ;

π—圆周率。

计算参数:

利用所选取的污染物迁移模型,能否达到对污染物迁移过程的合理预测,关键就在于模型参数的选取和确定是否正确合理。

本次预测所用模型需要的参数有:含水层厚度M;岩层的有效孔隙度n;水流速度u;污染物纵向弥散系数 D_L ;污染物横向弥散系数 D_T ,这些参数由本次水文地质勘察及类比区域勘察成果资料来确定。

a、含水层厚度 M

场区区域地下水含水层可以概化为由淤泥质粉细砂组成的松散岩类孔隙水含水层。 概化后的含水层厚度根据本次野外钻孔情况,场区含水层厚度为 10m。

b、含水层的平均有效孔隙度 n

场区含水层主要以淤泥质粉细砂组成的松散岩类孔隙水,根据相关经验参数n值为0.35。

c、水流速度

采用下列公式计算本场地下水实际流速。渗透系数取调查区域的最大值1.24×10⁻²cm/s。

 $U=K\cdot I/n$

式中: U—地下水实际流速(m/d);

K—渗透系数(m/d);

I—水力坡度 0.1%;

n—有效孔隙度。

U=1.24×10⁻²cm/s×0.1%/0.35=0.031m/d

e、纵向 x 方向的弥散系数 D_L

参考相关纵向弥散度相关经验系数,含水层介质弥散度取 1.00m,纵向弥散系数为弥散度和地下水实际流速的乘积,得到本次场地含水层纵向弥散系数为 0.612m²/d。

d、横向 y 方向的弥散系数 D_T

根据经验一般 $D_T/D_L=0.1$, 因此 D_T 取 0.061 m²/d。

表 6.6-2 模型参数取值一览表

参数指标	取值
瞬时注入的示踪剂质量 m _M	COD _{Mn} 32.2kg、氰化物 2.2kg、镍 1.9kg、铜 0.09kg
含水层的厚度 M	10m
地下水水流速度 u	0.031m/d
地下水流向	135°(以正北为 0°)
有效孔隙度 n	0.35
纵向弥散系数 DL	0.612m²/d
横向弥散系数 D _T	0.061m²/d

6.6.2.3 预测结果与评价

项目所在地地下水水质为 V 类水,以地下水水质标准 V 类水进行评价,以《地下水质量标准》(GB/T14848-2017)中 IV 类标准规定 COD_{Mn} 超标浓度 10.0mg/L、氰化物超标浓度 0.1mg/L、镍超标浓度 0.1mg/L、铜超标浓度 1.5mg/L, COD_{Mn} 检出限 0.05mg/L、氰化物检出限 0.002mg/L、镍检出限 0.006mg/L、铜检出限 0.009mg/L 作为本次预测超标及影响的临界线,预测结果如下:

表 6.6-3 地下水污染物超标及影响范围

>= >h = 1 >= / 4 >	浓度(mg/L)	超标范围	最远超标距离		最远影响距离				
污染时间(d)		(m^2)	(m)	影响范围(m²)	(m)				
	$\mathrm{COD}_{\mathrm{Mn}}$								
100	37.891	22.1	321	1611	44.1				
1000	3.789	/	/	10508	134				
5000	0.758	/	/	33003	338				
			氰化物						
100	2.589	792	32.1	1738	45.1				
1000	0.259	2306	80	11786	141				
5000	0.052	/	/	39528	355				
	镍								

100	2.236	753	31.1	1439	42.1				
1000	0.224	1944	76	8782	126				
5000	0.045	/	/	24397	312				
	铜								
100	0.106	/	/	595	28.1				
1000	0.011	/	/	393	51				
5000	0.0021	/	/	/	/				

1、项目废水处收集池发生泄漏后,COD_{Mn}在泄漏 100 天时,下游最大浓度为: 37.891mg/L, 出现超标,超标范围为 22.1m², 最远超标距离为 321m, 影响距离最远为下游 44.1m, 影响面积为 1611m²; 泄漏 1000 天时,下游最大浓度为: 3.789mg/L, 未超标,影响距离最远为下游 134m,影响面积为 10508m²; 泄漏 5000 天时,下游最大浓度为: 0.758mg/L, 未超标,影响距离最远为下游 338m,影响面积为 33003m²。

氰化物在泄漏 100 天时,下游最大浓度为: 2.589mg/L, 出现超标,超标范围为 792m², 最远超标距离为 32.1m, 影响距离最远为下游 45.1m, 影响面积为 1738m²; 泄漏 1000 天时,下游最大浓度为: 0.259mg/L, 出现超标,超标范围为 2306m²,最远超标距离为 80m,影响距离最远为下游 141m,影响面积为 11786m²;泄漏 5000 天时,下游最大浓度为: 0.052mg/L,未超标,影响距离最远为下游 355m,影响面积为 39528m²。

镍在泄漏 100 天时,下游最大浓度为: 2.236mg/L, 出现超标,超标范围为 753m²,最远超标距离为 31.1m,影响距离最远为下游 42.1m,影响面积为 1439m²;泄漏 1000 天时,下游最大浓度为: 0.224mg/L, 出现超标,超标范围为 1944m²,最远超标距离为 76m,影响距离最远为下游 126m,影响面积为 8782m²;泄漏 5000 天时,下游最大浓度为: 0.045mg/L,未超标,影响距离最远为下游 312m,影响面积为 24397m²。

铜在泄漏 100 天时,下游最大浓度为: 0.106mg/L,未超标,影响距离最远为下游 28.1m,影响面积为 595m²; 1000 天时,下游最大浓度为: 0.011mg/L,未超标,影响距 离最远为下游 51m,影响面积为 393m²; 5000 天时,下游最大浓度为: 0.0003mg/L,未超标,最大值低于检出限。

- 2、根据变化规律和计算分析数据,超标及影响范围在污染物发生泄漏后,均呈先增大后减小的趋势。污染晕随着时间推移不断扩大,污染源中心随着水流向下游迁移。
- 3、从保守角度出发,本次模拟计算忽略污染物在包气带的运移过程,而在实际情况中,包气带能够很大程度上减少污染物扩散。由综合污染物的超标及影响范围并结合

当地水文地质条件可得,发生泄漏后,该场地不会对地下水造成太大的影响。

6.6.3 地下水污染防治措施

项目位于中山市三角镇,位于珠江三角洲中山不宜开发区。本项目的建设场地地下水环境不属于集中式饮用水源准保护区,不属于准保护区以外的补给径流区、不属于热水、矿泉水、温泉等特殊地下水源保护区,不属于未规划准保护区的集中式饮用水水源及其保护区以外的补给径流区,不属于分散式饮用水水源地,不属于特殊地下水资源保护区以外的分布区等环境敏感区。因此,项目场地地下水敏感程度为不敏感。

本项目不开采地下水,也不进行地下水的回灌,项目没有生产废水外排,不会对地下水环境产生显著影响。

由于项目场地、污水收集和输送设施地面都已经硬化,污染物对地下水影响较小。若有部分生活污水、生产废水进入地下水,在蒸发和包气带的吸附作用下,污染物进入含水层的量也较少。当包气带较厚时,污染物对潜水水质基本没有影响。在包气带薄、水位埋深小的地区,污染物有可能对潜水水质造成污染。因此,建设项目需做好生活污水、生产废水收集和输送设施的防渗措施并加强日常维护管理工作,以降低污染物泄漏对地下水的影响。

为防止本项目建设对所在区域土壤及地下水产生污染,本项目拟采取以下防腐防渗措施:

- ①对有废水产生的车间、单元等区域采取全面防渗处理,重点防渗处理单元包括: 废水收集暂存设施、事故池等,四周壁用砖砌或抗渗钢筋混凝土硬化防渗,再铺一层防水防酸砂浆,然后全池涂环氧树脂防腐防渗。通过上述措施可使重点污染区各单元防渗层渗透系数<10⁻¹⁰ cm/s。
- ②生产车间、生产区地面、一般固体废物暂存库采取粘土铺底,再在上层铺 10~15 cm 的水泥进行硬化,通过上述措施可使一般污染区各单元防渗层渗透系数≤10-7 cm/s。
- ③危险废物暂存场要求按《广东省固体废物污染环境条例》及《危险废物贮存污染控制标准》(GB 18597-2001)的有关规定设计、建设、运行,做好安全防护、环境监测及应急措施,地面为耐腐蚀、防渗透、防破裂的硬化地面,并配套防雨、防晒、防风等措施。

- ④加强对项目下游地下水的监控、监测,同时加强厂区污水处理及暂存设施的检查 和维护,防止污水渗漏引起地下水污染。
- ⑤考虑到项目所在地的地质情况,在下雨天由于雨水浮力的作用,容易导致埋于地下的废水输送管道破裂,从而造成电镀废水的泄漏,加大了对地下水污染的风险。为此,项目对厂内电镀废水输送管道采取架空方式铺设,并在管道沿线采取防渗措施及导流渠道,确保废水意外泄漏时废水可被导流收集并处理,防止污染地下水。
- ⑥对于生活垃圾,建设单位日产日清,尽量减少垃圾渗滤液的产生,同时对堆放点做防腐、防渗措施,并设计渗滤液排水收集系统,将其引至项目废水事故应急池,避免垃圾渗滤液对地下水产生污染。

由污染途径及对应措施分析可知,项目对可能产生地下水影响的各项途径均进行有效预防。在做好各项防渗措施,并加强维护和厂区环境管理的基础上,可有效控制厂区内的废水污染物下渗现象,避免污染地下水,因此本项目不会对区域地下水产生明显的影响。

6.7运营期土壤环境影响评价

6.7.1 建设项目土壤影响途径识别

6.7.1.1 废水垂直入渗

项目电镀生产车间、危废暂存间、一般固废暂存间等均位于生产车间 6 楼;项目依托的废水收集池位于一楼,在事故情况下,会造成污染物等的泄露,通过垂直入渗进一步污染土壤。根据地下水污染防治措施章节的内容可知,本项目《危险废物贮存污染控制标准》(GB18597-2001)中的要求,根据场地特性和项目特征,制定分区防渗。对于废水收集池物采取重点防渗,对于可能发生物料和污染物泄露的地上构筑物采取一般防渗,其他区域按建筑要求做地面处理。防渗材料应与物料或污染物相兼容,重点防渗区其渗透系数应<1.0×10⁻¹⁰cm/s。

项目危险废物储存区、电镀车间均严格按照《危险废物贮存污染控制标准》 (GB18597-2001)有关规范设计,废水收集系统各建构筑物按要求做好防渗措施,项目 建成后对周边土壤的影响较小,同时本项目产生的危险废物也均得到安全处理和处置。因此只要各个环节得到良好控制,可以将本项目对土壤的影响降至最低。

本次假设非正常工况下厂区发生泄漏导致污染物进入土壤,导致土壤遭受污染,在此状况下预测污染物对土壤造成的影响,项目废水收集池相对集中,进水浓度较高,且防渗层发生破损较难发现,对土壤环境影响相对较大。因此,设定以下污染物泄漏情景:废水收集池防渗层发生破裂后长时间未进行处理,渗滤液连续不断下渗进入到土壤中。根据废水污染物产生情况及毒性,以及《环境影响评价技术导则土壤环境(试行)》(HJ964-2018),选取铜、镍、氰化物作为预测因子。由前述章节,污染物氰化物、铜、镍的初始浓度选取各股废水中相应指标总和。

6.7.1.2 废气沉降影响

项目排放废气主要污染物为氯化氢、氰化氢,由于项目位于车间6楼,通过入渗对土壤环境产生影响可能性极小,主要会通过大气干、湿沉降的方式进入周围的土壤,从而使局地土壤环境质量逐步受到污染影响。通过对污染物产生影响特征及危害性,故本次评价选取废气中排放的氰化氢,预测其通过多年沉降后对区域土壤环境质量的影响。

6.7.2 土壤环境影响预测

6.7.2.1 评价范围

根据《环境影响评价技术导则土壤环境(试行)》(HJ 964-2018)土壤环境分析预测评价范围与现状调查评价范围一致,即项目占地范围及周边 200 m 范围。

6.7.2.2 情景设置

本项目有组织氰化物和无组织氰化物排放量为 0.084t/a; 项目非正常工况下厂区生产废水中的氰化物泄漏量为 0.6864t/a; 非正常工况下厂区生产废水中的镍泄漏量为 0.5928t/a; 非正常工况下厂区生产废水中的铜泄漏量为 0.0281t/a。项目沉降和非正常工况下泄漏事故情景设置如下:

项目产生的污染物氰化物、镍、铜全部进入在土壤评价范围土壤中;

6.7.2.3 预测与评价因子

为了评价土壤环境预测结果,对比《土壤环境质量建设用地土壤污染风险管控标准 (试行)》(GB36600-2018),选择氰化物、总镍、总铜为本次预测因子和评价因子。

6.7.2.4 评价标准

评价标准采用《土壤环境质量建设用地土壤污染风险管控标准(试行)》 (GB36600-2018)表 2 中第二类用地的筛选值。

6.7.2.5 预测评价方法

本项目属于污染影响型建设项目,评价工作等级为二级,项目对土壤环境的影响类型主要以大气沉降及事故状态下废水垂直入渗,根据《环境影响评价技术导则土壤环境(试行)》(HJ 964-2018),选择附录 E 中方法一作为适用预测方法。

1、一般方法和步骤

- a) 可通过工程分析计算土壤中某种物质的输入量;涉及大气沉降影响的,可参照 HJ2.2 相关技术方法给出:
- b)土壤中某种物质的输出量主要包括淋溶或径流排出、土壤缓冲消耗等两部分; 植物吸收量通常较小,不予考虑;涉及大气沉降影响的,可不考虑输出量;
 - c)分析比较输入量和输出量,计算土壤中某种物质的增量;
 - d) 将土壤中某种物质的增量与土壤现状值进行叠加后,进行土壤环境影响预测。
 - 2、预测方法
 - a) 单位质量土壤中某种物质的增量可用下式计算:

$$\Delta S = n(I_s - L_s - R_s)/(\rho_h \times A \times D)$$

式中: ΔS——单位质量表层土壤中某种物质的增量, g/kg;

Is——预测评价范围内单位年份表层土壤中某种物质的输入量,g;

Ls——预测评价范围内单位年份表层土壤中某种物质经淋溶排出的量, g;

Rs——预测评价范围内单位年份表层土壤中某种物质经径流排出的量, g;

 $ρ_b$ —表层土壤容重, kg/m^3 ;

A——预测评价范围, m^2 :

D——表层土壤深度,一般取 0.2m,可根据实际情况适当调整:

n——持续年份, a。

b) 单位质量土壤中某种物质的预测值可根据其增量叠加现状值进行计算,如下式:

$$S = S_b + \Delta S$$

式中: S_b——单位质量土壤中某种物质的现状值, g/kg; S——单位质量土壤中某种物质的预测值, g/kg。

2、参数选取

氰化物输入量:根据工程分析本项目氰化物排放量为 0.7704t/a,本次预测选取最不利的情况,即 Is 为 770400g:

镍输入量:根据工程分析本项目氰化物排放量为 0.5928t/a,本次预测选取最不利的情况,即 Is 为 592800g;

铜输入量:根据工程分析本项目氰化物排放量为 0.0281t/a,本次预测选取最不利的情况,即 Is 为 28100g;

经淋溶和径流排出的量: 涉及大气沉降影响的,可不考虑输出量;

表层 37410kg/m³;

预测评价范围:本项目预测评价范围为项目周边200m范围内,面积大约为246814m²; 表层土壤深度:本项目取0.2m;

根据以上取值可计算出,评价范围内氰化物排放量在土壤中增量和预测值,计算结果见下表。

污染 物	持续年 份	输入量 Is (g)	淋溶排入 量	径流排出 量	容重ρb (kg/m³)	评价范 围	土壤深度	现状值 Sb
	n		Ls (g)	Rs (g)		(m ²)	D (m)	(g/kg)
氰化 物	20	770400	0	0	1370	246814	0.2	0.00002
镍	20	59280	0	0	1370	246814	0.2	0.038
铜	20	28100	0	0	1370	246814	0.2	0.096

表 6.7-1 土壤预测参数汇总表

(注: 土壤环境质量现状氰化物均未检出,按检出限一半计算,即 0.02mg/kg)

6.7.2.6 预测结果与评价

根据上述预测方法,预测结果见下表:

预测值 污染物 现状值 单位 5年 10年 15年 20年 氰化物 0.02 56.96 113.92 170.88 227.84 镍 38 43.83 87.66 131.49 175.32 mg/kg 铜 96 20.78 41.56 62.34 83.12

表 6.7-2 预测结果一览表

通过上表可知,在设置预测情景下,项目的镍、铜对评价范围内的土壤环境影响很小,叠加项目所在区域的现状值后满足《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)表 2 中第二类用地的筛选值;项目氰化物未满足《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)表 2 中第二类用地的筛选值。为此建设单位必须采取以下措施,防止土壤污染事故的发生:

- ①对有废水收集池采取全面防渗处理,四周壁用砖砌或抗渗钢筋混凝土硬化防渗, 再铺一层防水防酸砂浆,然后全池涂环氧树脂防腐防渗
 - ②采取粘土铺底,再在上层铺 10~15 cm 的水泥进行硬化。
- ③考虑到项目所在地的地质情况,在下雨天由于雨水浮力的作用,容易导致埋于地下的废水输送管道破裂,从而造成电镀废水的泄漏,加大了对土壤污染的风险。为此,项目对厂内电镀废水输送管道采取架空方式铺设,并在管道沿线采取防渗措施及导流渠道,确保废水意外泄漏时废水可被导流收集并处理,防止污染土壤。

通过以上措施, 项目对周边土壤环境影响不大。

人。一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个							
工作内容		完成情况	备注				
	影响类型	污染影响型☑;生态影响型□;两种兼有□					
影响识别	土地利用类型	建设用地☑;农用地□;未利用地□	土地利用类型图				
	占地规模	(0.0255) hm ²					
	敏感目标信息	敏感目标(高平村)、方位(W)、距离(165m)					
	影响途径	大气沉降☑; 地面漫流□; 垂直入渗☑; 地下水位□其他					
	全部污染物	氰化物、镍、铜					
	特征因子	氰化物、镍、铜					

表 6.7-3 土壤环境影响评价自查表

	工作内容		备注				
	所属土壤环境影 响评价项目类别						
	敏感程度						
	评价工作等级						
	资料收集						
现状	理化特性	pH 值、阳离子	同附录 C				
调查	现状监测点位		占地范 围内	占地范围外	深度	点位布置图	
内		表层样点数	1	2	0.2m		
容		柱状样点数	3	0	3m		
	现状监测因子	益测因子 基本指标 45 项、氰化物					
现	评价因子						
状	评价标准	GB 1561					
评价	现状评价结论	 项目					
	预测因子						
影	预测方法						
响预	预测分析内容	预测分析内容 影响范围 (较小) 影响程度 (较轻)					
测	预测结论						
防治措施	防控措施	土壤环境质量					
	跟踪监测	监测点数	Į	监测指标 出	监测频次		
		1		镉、汞、砷、铜、铅、铬(六 价)、镍、氰化物	5 年/次		
儿	信息公开指标						
	评价结论 在可接受范围内						

注 1: "□"为勾选项,可√; "()"为内容填写项; "备注"为其他补充内容。 注 2: 需要分别开展土壤环境影响评级工作的,分别填写自查表。

6.8运营期生态影响分析

项目技改扩建后租用场地位于 6 楼,项目所在区域生态敏感性一般,根据《环境影响评价技术导则(生态影响)》(HJ 19-2011),项目生态评价等级定为三级,做生态影响分析。

该项目已过了施工期,则项目对区域生态环境影响不大。

6.9环境风险影响评价

根据《建设项目环境风险评价技术导则》(HJ169-2018)的相关要求,应对可能产生重大环境污染事故隐患进行环境风险评价。

环境风险评价的目的是对项目建设和运行期间发生的可预测突发性事件或事故(一般不包括认为破坏及自然灾害)引起有毒有害、易燃易爆等物质泄漏,或突发事件产生新的有毒有害物质,所造成的对人体与环境的影响和损害进行评估,提出合理可行的防范、应急与建环措施,以使建设项目事故率、损失和环境影响达到可接受水平。

根据《建设项目环境风险评价技术导则》(HJ169-2018),本项目环境风险综合评价工作等级为二级,大气环境、地表水、地下水环境风险评价等级分别为二级、简单分析、三级。

6.9.1 环境风险识别

6.9.1.1 危险物质识别

根据《建设项目环境风险评价技术导则》(HJ169-2018)表 B.1 突发环境事件风险物质及临界量、表 B.2 其他危险物质临界量推荐值,以及《危险化学品重大危险源辨识》(GB18218-2018),项目使用氯化镍、硫酸镍、氰化钾、氰化银钾、氰化亚金钾、盐酸、硫酸、镍阳极、氨基磺酸镍、含镍槽液、银板、含银槽液、氰化亚铜、铜阳极、含铜槽液等均为突发环境事件风险物质。

次 6.5-1 工文/// 							
序号	危险物质名称	形态	最大存在总量 q _n	贮存方式	储存位置		
1	氯化镍	固	1	袋装	原材料仓		
2	硫酸镍	液	0.025	通知	原材料仓		
3	氰化钾	固	0.5	袋装	原材料仓		
4	氰化银钾	固	0.001	瓶装	原材料仓		
5	氰化亚金钾	固	0.001	瓶装	原材料仓		
6	盐酸	液	0.5	桶装	原材料仓		
7	硫酸	液	0.5	桶装	原材料仓		
	镍阳极	固	1	袋装	原材料仓		
9	氨基磺酸镍	液	1	桶装	原材料仓		
10	含镍槽液	液	0.5	镀槽内	生产线上		
11	银板	固	0.01	袋装	原材料仓		

表 6.9-1 主要危险物料贮存情况

12	含银槽液	液	0.01	镀槽内	生产线上
13	氰化亚铜	固	0.005	袋装	原材料仓
14	铜阳极	固	0.1	袋装	原材料仓
15	含铜槽液	液	0.01	镀槽内	生产线上

表 6.9-2 主要危险物质及应急措施

		衣 6.9-	2 王要危险物质及应急措施	i e
危险 物质 名称	急性毒 性类别	危害性	健康危害	泄漏处理及灭火方法
氯化镍	LD50: 175mg/kg (大鼠经口) LC50: 无资 料	遇钾、钠剧烈 反应。受高热 分解放出有毒 的气体。	接触者可发生接触性皮炎或过敏性湿疹。吸入本品粉尘,可发生支气管炎或支气管肺炎、过敏性肺炎,并可发生肾上腺皮质功能不全。镍化合物属致癌物。	隔离泄漏污染区,限制出入。建议应急处理人员戴防尘口罩,穿防毒服。不要直接接触泄漏物。小量泄漏:避免扬尘,小心扫起,置于袋中转移至安全场所。大量泄漏:收集回收或运至废物处理场所处置。 尽可能将容器从火场移至空旷处。灭火剂:雾状水、泡沫、干粉、二氧化碳、砂土。
硫酸 镍	LD50: 无资料; LC50: 无资料	受高热分解产 生有毒的硫化 物烟气。	吸入后对呼吸道有刺激性。可引起哮喘和肺嗜酸细胞增多症,可致支气管炎。对眼有刺激性。皮肤接触可引起皮炎和湿疹,常伴有剧烈瘙痒,称之为"镍痒症"。大量口服引起恶心、呕吐和眩晕。	隔离泄漏污染区,限制出入。建议应急处理人员戴防尘面具(全面罩),穿防毒服。用大量水冲洗,洗水稀释后放入废水系统。若大量泄漏,收集回收或运至废物处理场所处置。消防人员必须穿全身防火防毒服,在上风向灭火。灭火时尽可能将容器从火场移至空旷处。
氰化 钾	LD ₅₀ : 506.4 mg/kg (大鼠 经口),LC ₅₀ : 无资料	受接毒体亚酸,的或能与生物酸、周、克生物酸、有危露吸氧出氢的人类。 空水碳毒化氢氧化氢氧化化 人名英格兰人姓氏 医二种 医电子	抑室吸入、空水、	隔离泄漏污染区,限制出入。建议应急处理人员戴防尘口罩,穿防毒服。不要直接接触泄漏物。小量泄漏:避免扬尘,小心扫起,置于袋中转移至安全场所。大量泄漏:收集回收或运至废物处理场所处置。 尽可能将容器从火场移至空旷处。灭火剂:雾状水、泡沫、干粉、二氧化碳、砂土。

盐酸	LD50: 无资料 LC50: 无资料	能与一些活性 金属 一些 不	接触其蒸气或烟雾,可引起急性中毒,出现眼结膜炎,鼻及口腔粘膜有烧,外感,鼻吸口腔粘膜白血,消化。一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。建议应急处理人员戴自给正压式呼吸器,穿防酸碱工作服。不要直接接触泄漏物。尽可能切断泄漏源。小量泄漏:用砂土、干燥石灰或苏打灰混合。也可以用大量水冲洗,洗水稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容。用泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。用碱性物质如碳酸氢钠、碳酸钠、消石灰等中和。也可用大量水扑救。
硫酸	LD50: 2140mg/kg (大鼠经口) LC50: 510mg/m³ (2h,大鼠吸 入) 320mg/m³ (2h,小鼠吸	遇人,然纤触反起石雷盐金烈爆有性水可与苯(素发,烧高盐苦粉应或烈吸大发易)如等生甚。鼠、除末,燃的水量生燃和糖)剧至遇酸硝酸等发烧腐性放沸物可、接烈引电、酸、猛生。蚀。	对皮肤、粘膜等蚀作果实。 大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大	迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。建议应急处理人员戴自给正压式呼吸器,穿防酸碱工作服切断泄漏源。防止流入管道、排泄沟等限制性空间。小量泄漏;的生工,时,是一个人员,是一个人人员,是一个人人员,是一个人人,是一个人人,是一个人人,是一个人人,是一个人人,是一个人人,是一个人人,是一个人人,是一个人人,是一个人,是一个
镍及 其化 合物	/	/	重金属毒性污染	隔离泄漏污染区,限制出入。建 议应急处理人员戴防尘口罩,穿 防毒服。不要直接接触泄漏物。 小量泄漏:避免扬尘,小心扫起, 置于袋中转移至安全场所。
银及 其化 合物	/	/	重金属毒性污染	隔离泄漏污染区,限制出入。建 议应急处理人员戴防尘口罩,穿 防毒服。不要直接接触泄漏物。 小量泄漏:避免扬尘,小心扫起, 置于袋中转移至安全场所。

				隔离泄漏污染区,限制出入。建
铜及				议应急处理人员戴防尘口罩,穿
其化	/	/	重金属毒性污染	防毒服。不要直接接触泄漏物。
合物				小量泄漏:避免扬尘,小心扫起,
				置于袋中转移至安全场所。

6.9.1.2 生产系统危险性识别

根据《建设项目环境风险评价技术导则》(HJ/T169-2018),生产系统危险性识别范围:主要生产装置、储运设施、公用工程和辅助生产设施,以及环境保护设施等。

(1) 生产装置风险识别

项目为专业表面处理项目,主要生产设备为电镀生产线设备,生产装置风险主要为生产设备各类槽体、阀门、输送管道及输送泵等因人工操作失误或发生故障,造成物料泄漏。

(2) 储运设施风险识别

项目使用盐酸、硫酸等,若操作不当可能会导致其发生泄漏。

危险废物仓库主要用于储存废渣、槽液等危险废物,如果储存不当或人工操作失误, 包装桶或包装袋发生破裂或损坏,导致危险废物发生泄漏。

(3) 环保设施故障

项目生活污水经三级化粪池预处理后排入三角镇污水处理厂处理,生产废水经专制管道进入高平污水处理厂处理。若污水处理设施发生故障,导致废水不能达标外排,会对纳污水体洪奇沥水道的水质产生影响。

项目设置碱液喷淋塔、碱性次氯酸钠溶液喷淋塔对项目产生的酸雾、氰化氢等大气污染物进行处理,当废气处理设施发生故障,输送管道或阀门发生损坏,容易引起废气发生事故性排放。

6.9.1.3 环境影响途径

项目存在的环境风险主要为原材料泄漏事故、泄漏物质引起的火灾、废水及废气处 理设施故障引起的污染物超标排放。其中若泄漏的风险物质、火灾事故衍生的消防废水 未采取相应的堵漏及截流措施,则泄漏物及消防废水会通过地表水的途径对厂区外地下

水、地表水、土壤环境产生影响;泄漏、火灾事故产生的废气、废气处理系统故障产生 的超标废气通过大气扩散的途径对周围环境产生影响;废水处理设施故障导致超标废水 排入周边地表水,从而对水体水质造成一定影响。

6.9.1.4 风险识别结果

项目生产过程环境风险识别如下:

表 6.9-3 建设项目环境风险识别表

序号	危险 单元	风险源	主要危险物质	环境风险 类型	环境影响途径	可能受影 响的环境 敏感目标	备注
1	储运工程	仓库、各 车间	氯化镍、硫酸镍、铜化银钾、氯化镍、氰化银钾、氯化氯化氯化氯化氯化氯化氯化氯化氯化氯化氯化氯化氯化氯化氯化氯化氯化氯化氯化	物质泄漏、火灾	大气:火灾会产生废气及 其次生污染物,污染周围 环境空气; 地下水、土壤:物质泄漏 可能渗入土壤中污染土 壤、地下水 地表水:消防废水进入附 近河涌	项目附近 大气环 境、地表 水	/
2	生产车间	电器、电 路、生产 设备	氯化镍、硫酸 镍、铜化铜、氰化 银化氰化氧化 金钾、盐酸、镍 酸、镍酸镍、含 基磺酸、镍阳极 大量, 银板、含根 根板、含银槽 液、氰化 液、铜阳极 液 、铜阳极 液	物质泄漏、火灾	大气:火灾会产生废气及 其次生污染物,污染周围 环境空气 地表水:消防废水进入附 近河涌	项目附近 大气环 境、地表 水	/
3	环保 工程	各废气治 理设施	氯化氢、氰化氢	废气未经 有效治理	废气治理设施故障、失效, 导致废气未经有效治理直 接排放	项目附近 大气环境	/
	上作出	废水处理 系统故障	生产废水	废水输送 管道破裂	地表水:废水进入附近河 涌	地表水	/

根据项目的生产性质,认为项目风险事故的最大可信事故为:危险化学品、危险废物储存袋/桶损坏导致物质泄漏、扩散事故;生产废水输送系统损坏导致污染物事故排放;

厂区火灾造成的次生污染:废气处理设施故障、失效,导致废气未经有效治理直接排放。

1、危险化学品、危险废物的储存和使用风险

建设项目使用多种危险化学品作为原料、辅料,包括强酸以及重金属盐类等;同时还会产生电镀废渣、废电镀液、废酸等危险废物。这些物料与废物在储存和使用过程中,均可能会因自然或人为因素,出现事故造成泄漏而排入周围环境。

2、生产废水收集与输送系统风险

项目生产废水共分为前处理废水、综合废水、电镀镍废水、含氰废水、混排废水等5股,通过专制管网分别排入高平污水处理有限公司集中处理,在此过程中污水管网系统存在由于管道堵塞、破裂和接头处的破损造成大量污水外溢的事故,外溢污水不经处理直接外渗将会对土壤、地表水体、地下水体等造成污染。

3、厂区火灾次生污染

生产车间及原料仓库、危废仓发生火灾,生成有害燃烧产物 CO、CO₂,对周围人群及大气环境产生影响。

4、废气处理设施故障、失效

项目产生的氰化氢、氯化氢、等废气污染物均经有效处理后排放,废气处理设施故障、失效将使加重项目对周边大气环境的污染。

6.9.2 大气环境风险影响分析

项目产生的氰化氢、氯化氢等废气污染物均经有效处理后排放,由大气预测结果,项目废气处理设施故障、失效(非正常排放)工况下,对周边大气环境的影响将明显增大,因此项目需加强废气收集和处理设施的监管,杜绝废气事故排放情景的发生。

项目生产车间由于电器、电路、生产设备故障会导致生产车间及原料仓库发生火灾。 火灾本身不会对环境产生直接的污染,但物质燃烧时会产生污染物,产生次生大气环境污染。本项目储存的化学原料等为易燃物质,在火灾时易起火燃烧。其燃烧时主要污染物为一氧化碳、二氧化碳、水蒸气及其他有毒烟气。建设单位在生产过程应加强电器、电路、生产设备的维护保养,加强员工的安全生产意识培训,积极主动发现问题、解决问题,杜绝火灾事故发生。

6.9.3 地表水、地下水、土壤环境风险影响分析

项目生产废水共分为前处理废水、综合废水、电镀镍废水、含氰废水、混排废水等

5 股,通过专制管网分别排入高平污水处理有限公司集中处理,在此过程中污水管网系统存在由于管道堵塞、破裂和接头处的破损造成大量污水外溢的事故,外溢污水不经处理直接外渗将会对土壤、地表水体、地下水体等造成污染。目前,项目生产废水收集管网架空敷设,可及时发现管网出现的问题,及时作出应急对策。

建设项目使用多种危险化学品作为原料、辅料,包括强酸以及重金属盐类等;同时还会产生电镀废渣、废电镀液、废酸碱等危险废物。这些物料与废物在储存和使用过程中,均可能会因自然或人为因素,出现事故造成泄露,渗入土壤、污染土壤及地下水,泄露至地表水体中污染地表水环境。建设单位应加强原材料、危险废物的管理,强化危险化学品原材料车间、危废仓库地面的防渗、围堰工程,避免泄露物料进入外环境中。

项目一旦发生火灾事故,在消防过程中会产生消防废水。若消防废水收集不当或未及时截流,将会通过雨水管网流出厂区。因此,厂区应在雨水排放口设置截断阀门,在发生事故时及时关闭;同时厂区内设置一个容积为 26.4m³ 的事故应急池并与高平污水处理有限公司进行事故应急联动(当厂区内发生突发环境事故,本身事故应急系统不能满足应急需求时,可将高平污水处理有限公司 2230m³ 的事故应急池作为备用应急池),将项目事故废水收集在厂区事故应急池及高平污水处理有限公司的事故池中,对周边环境影响不大。

6.9.4 危险化学品、危险废物的储存和使用风险

项目产生险化学品废包装、废滤芯、废槽渣、废液、废离子交换树脂等危险废物。项目原材料在运输、储存和使用过程中均可能会因自然或人为因素导致包装桶出现破损、危废贮存过程因包装桶破损导致物料事故泄露而排入周围环境。项目生产车间、危废仓设置围堰以防发生事故泄露后危险物质进入周边水体。

7 污染控制措施及技术可行性分析

7.1 废气污染控制措施及其可行性分析

7.1.1 废气收集措施

1、连续电镀线废气收集

连续电镀线电镀槽废气收集采用成套设备密闭收集,电镀槽均配备密闭性上盖,每条连续电镀生产线对应一根料带,在电镀槽前后方各有一个料带进出口。正常生产时电镀槽上盖为关闭状态,电镀槽除料带进出口,其他部位均为密闭结构;连续电镀线废气集气管口位于电镀槽内侧,与电镀槽体直接连接。连续电镀线电镀槽料带进出口尺寸较小,在生产废气在收集时,电镀槽内会形成负压,在此负压作用下电镀槽内生产废气被收集进入废气收集系统,项目连续电镀线拟采用的废气收集措施可满足收集效率不低于95%的要求。

表 7.1-1 各连续电镀线收集风量一览表

排气筒 编号	车间 位置	生产线	工序	污染物	槽体面 积m²	设计 风速 为 m/s	理论废 气风量 (m³/h)	实际废气 风量 (m³/h)
		挂镀镍铬半自动	活化		3.12			
		性极保留于自幼 线	化学抛光		1.82			
		- 级	预镀镍		1.82			
		 电铸镍半自动线	活化		0.6272			
		电对床十日初线	预镀镍	· 氧化氨	0.6272			
		1#塑胶挂镀铜镍 铬自动线	京(V) 家(V) 家(V) 家(V) 家(V) 家(V) 家(V) 家(V) 家	親化氢1.20.25				60000
G1	2F	添海细油人细业	活化		0.25	0.8	49381.	
		滚镀铜镍金锡半 自动线	活化		0.25			
		日幼线 	预镀镍		0.5			
		电铸镍半自动线	酸銅		2.132			
		1#塑胶挂镀铜镍 铬自动线	镀镍	硫酸雾	2.4			
		1#塑胶挂镀铜镍 铬自动线 酸铜	2.4					
G2	2F	1#塑胶挂镀铜镍	化学镍	氨气	2.4	0.8	6912	40000
G2	<i>Δ</i> Γ	铬自动线	化子保 	安门	2. 4	0.8	0912	40000
G3	2F	滚镀铜镍金锡半	碱铜	氰化氢	1.05	0.8	27049	50000

		自动线	镀金		0.5			
		4 (24) マンナ /ナ /☆ /☆	镀金1		0.66			
		1#端子连续镀镍	镀金 2		0.66			
		金锡自动线	镀金3		0.1984			
		2#端子连续镀镍	镀金1		0.572			
		金锡自动线	镀金 2		0.1984			
		2 11分 フンナル土 4亩 4亩	镀金1		0.4576			
		3#端子连续镀镍	镀金 2		0.572			
		金锡自动线	镀金3		0.416			
	4F	4 // 计 了 法 / 去 / 连 / 迫	镀金1		0.492			
		4#端子连续镀镍	镀金 2		0.473			
		金锡自动线	镀金3		0.1984			
			镀金1		0.52			
			镀金 2		0.6			
		5#端子连续镀镍	镀金3		0.52			
		金锡自动线	镀金 4		0.418			
			镀金 5		0.64			
			镀金 6		0.2464			
0.5	2F	挂镀镍铬半自动 线	镀铬	加工公司	1.82	0.0	12152 (15000
G5	6F	1#塑胶挂镀铜镍 铬自动线	镀三价铬	铬酸雾	2.4	0.8	12153.6	15000
	4F	6#端子连续镀铜 镍金锡自动线	预镀镍		0.52			
		9#端子连续镀镍	预镀镍		0.246			
		钯金锡自动线	预镀镍		0.246			
		10#端子连续镀 镍钯金锡自动线	预镀镍		0.246			
G6	5F	11#端子连续镀 镍钯金锡自动线	预镀镍	氯化氢	0.246	0.8	7994	40000
Go	31	12#端子连续镀 镍钯金锡自动线	预镀镍		0.28	0.8	/	40000
		13#端子连续镀 镍钯金锡自动线	预镀镍		0.28			
		14#端子连续镀 镍钯金锡自动线	预镀镍		0.28			
	4F	6#端子连续镀铜 镍金锡自动线	酸铜	硫酸雾	0.432			
		8#端子连续镀镍 钯金锡自动线	刷镀鈀		0.246			
G7	5F	9#端子连续镀镍 钯金锡自动线	刷镀鈀	氨气	0.246	0.8	6163	50000
		10#端子连续镀	刷镀鈀		0.246			

		镍钯金锡自动线						
		11#端子连续镀						
		镍钯金锡自动线	刷镀鈀		0.246			
		12#端子连续镀	刷镀鈀		0.2542			
		镍钯金锡自动线						
		13#端子连续镀	刷镀鈀		0.4264			
		镍钯金锡自动线						
		14#端子连续镀	刷镀钯		0.4756			
		镍钯金锡自动线	₩ A 4		0.246			
		8#端子连续镀镍	镀金1		0.246			
		钯金锡自动线	浸金 2		0.246			
		9#端子连续镀镍	镀金1		0.246			
		钯金锡自动线	镀金 2		0.246			
		10#端子连续镀	镀金1		0.246			
		镍钯金锡自动线	浸金 2		0.246			
	5F	11#端子连续镀	镀金1		0.246			
		镍钯金锡自动线	镀金2		0.246			
		12#端子连续镀	镀金1		0.2542			
		镍钯金锡自动线	镀金 2		0.2542		28465.92	
		13#端子连续镀	镀金1		0.2542			
		镍钯金锡自动线	镀金 2	- 氰化氢	0.2542			50000
G8		14#端子连续镀	镀金1		0.2542	0.8		
00		镍钯金锡自动线	镀金 2		0.2542	0.0		
		15#端子连续镀	镀金1		0.246			
		镍钯金锡自动线	镀金2		0.246			
		16#端子连续镀	镀金1		0.246			
		镍钯金锡自动线	镀金2		0.246			
	(E	19#端子连续镀	婦人		0.5684			
	6F	铜镍锡金自动线	镀金		0.3684			
			碱铜		0.6272			
		端子连续镀银半	预镀銀		0.6272			
		自动线	镀银 1		1.232			
			镀银 2		1.232			
	7E	端子连续镀钌铑	/		1.10			
	7F	半自动线	镀金		1.12			
		15#端子连续镀	新雄垍		0.246			
		镍钯金锡自动线	预镀镍		0.246			
		16#端子连续镀	3万 k亩 k自		0.246			
<u> </u>		1	预镀镍		0.246		23440.89	£0000
G9	(F	镍钯金锡自动线						
	6F	镍钯金锡自动线	预镀镍1	氯化氢	0.6272	0.8	6	50000
	6F	镍钯金锡自动线 17#端子连续镀	预镀镍 1 预镀镍 2	,	0.6272 0.448	0.8	6	30000
	6F			1 录(化图)		0.8	6	30000
	6F	17#端子连续镀	预镀镍2	1 录化图	0.448	0.8	6	30000

			预镀镍1		0.6272			
		18#端子连续镀	预镀镍2		0.448			
		镍锡自动线	预镀镍		0.315			
			活化		0.6272			
		19#端子连续镀	预镀镍		0.4212			
		铜镍锡金自动线	预镀镍		0.6751			
		- - - - - - - -	活化		0.2025			
		19#端子连续镀 铜镍锡金自动线	酸铜	<i>T</i>	0.432			
	7F	21#端子连续镀	酸铜	硫酸雾	1.2544			
	/F	银自动线	活化		0.6272			
	Œ	15#端子连续镀镍钯金锡自动线	刷镀鈀		0.246			
G10	6F	16#端子连续镀 镍钯金锡自动线	刷镀鈀	氨气	0.246	0.8	3545.856	60000
	7F	22#端子连续镀 镍钯金铑钌自动 线	水洗		0.7392			

2、电泳、水转印、烘干工序废气收集措施

(1) 电泳、烘干工序废气

项目端子连续电泳半自动线电泳工序有机废气通过电泳工位整体密闭收集;烘干工序烤箱设置于密闭烘干房内,烘干工序废气经整体密闭收集,综合考虑收集效率为90%(《广东省工业源挥发性有机物减排量核算方法(试行)》中设备废气排口直连的收集率可达95%,项目收集效率保守考虑取90%)。电泳、烘干工序有机废气单独收集,收集后与水转印、烘干工序有机废气一起处理。

(2) 水转印、烘干工序

项目水转印工序在密闭房间内进行,水转印过程有机废气经整体密闭收集,工件经转印、清洗后进入烘干炉烘干处理,烘干炉为密闭箱体设计,箱体中间设置管道收集,仅有少量废气从进出口处逸散,建设单位拟在进出口处设置集气罩,加强对逸散废气的收集,收集效率可达90%(《广东省工业源挥发性有机物减排量核算方法(试行)》中设备废气排口直连的收集率可达95%,项目收集效率保守考虑取90%)。

7.1.2 废气处理措施

1、氯化氢、硫酸雾

项目收集的氯化氢、硫酸雾经碱液喷淋处理后排放,氯化氢废气处理效率 90%。全 388 厂设3个酸雾废气排气筒 G1、G6、G9。

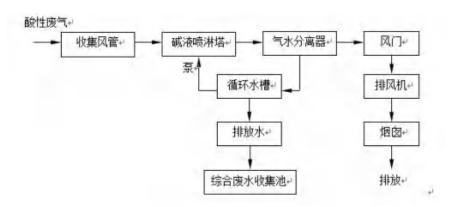


图 7.1-1 一般酸雾废气处理工艺流程

为保证酸性废气有效处理,废气停留时间≥2S,喷淋液≥1.5L 水/m³废气,酸性废气喷淋塔水箱总体积为 1m³。上述方法能有效地控制氯化氢、硫酸雾气体排放浓度和排放量。氯化氢、硫酸属强酸性物质,易与碱发生中和反应。因此,本项目碱液喷淋处理吸收装置对氯化氢、硫酸雾的处理效率达 90%以上。经上述措施处理后,尾气由高 50m 的排气筒排放,氯化氢、硫酸雾排放浓度可以达到《电镀污染物排放标准》(GB21900-2008)表 5 的新建企业大气污染物排放限值。

2、含氰废气处理工艺

项目产生的含氰废气均为连续自动电镀线产生,含氰废气被废气收集系统收集至含氰废气喷淋塔处理,项目含氰废气处理塔处理工艺采用"碱性次氯酸钠溶液"喷淋处理。含氰废气中主要为氰化氢,氰化氢为酸性气体,采用碱性溶液喷淋可进一步增强喷淋溶液对废气中氰化氢的吸收能力,项目含氰废气吸收塔以 0.1%~0.2%的次氯酸钠溶液作为吸收液,经过 3~4s 冲洗后,废气中的氰化氢被吸收氧化分解,经处理后的气体从净化塔顶部达标排放。本项目采用的"碱性次氯酸钠溶液"喷淋处理属于喷淋塔吸收氧化法,对氰化氢处理效率取值 90%,处理后氰化氢酸雾达到《电镀污染物排放标准》(GB21900-2008)中表 5 的新建企业大气污染物排放限值。

		参数
	数量 (个)	2
	尺寸	ф 2500mm×6500mm
 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	喷淋层高度(mm)	1100
"奶"	填料层高度(mm)	400
	除雾层高度(mm)	600
	机风量变频范围	~30000 m³/h

表 7.2-4 含氰废气处理装置参数汇总

	项目	参数
	水汽比	$1.5L/m^3$
	数量(台)	2
水泵	功率	7.5KW
/\?\x	水量	100 L/min
	扬程	37m
	数量(个)	1
 	静压	1800Pa
<i>)^</i> \\1) L	材质	玻璃钢
	功率	55KW
	主风管	Ф 800mm

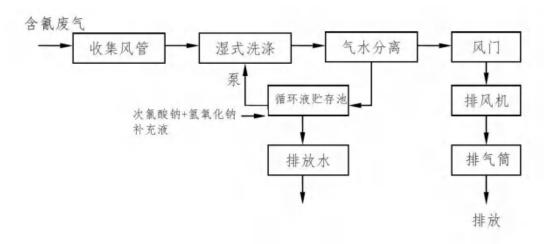


图 7.2-2 含氰废气处理工艺流程

3、电泳、水转印、烘干工序有机废气

电泳、烘干工序有机废气收集后与水转印、烘干工序有机废气一起经一套活性炭吸附装置处理,最后通过排气筒 G4 高空排放。

活性炭吸附装置工作原理:对使用吸附法净化治理有机废气是一种成熟的治理技术,通常的吸附剂有活性炭、沸石等种类。活性炭是应用最早、用途最广的一种优良吸附剂,对各种有机气体等具有较大的吸附量和较快的吸附效率。根据《简明通风设计手册》、《上海市工业固定源挥发性有机物治理技术指引》(上海市环境保护局、上海市环境科学研究院,2013.07)、《广东省印刷行业挥发性有机废气治理技术指南》等资料中对吸附法处理有机废气的技术推荐,活性炭吸附法适用气体流量范围为1000~60000m³/h,适用VOCs浓度范围为<200mg/m³,适宜废气温度范围为0~45℃,对照本项目有机废气情况的适用性如下。

表 7.1-3 活性炭吸附适用范围与本项目有机废气参数对照表

项目	活性炭吸附法适宜条件	项目有机废气参数	适用性
----	------------	----------	-----

气体流量范围	1000~60000m ³ /h	15000m ³ /h	适宜
适用 VOCs 浓度范围	$< 200 \text{mg/m}^3$	16.34mg/m ³	适宜
适宜废气温度范围	0~45°C	25°C	适宜

项目拟建设 1 套活性炭吸附装置,活性炭箱整体尺寸 2500×2200×2000mm、3 层碳层,层高 0.10m,则活性炭填充量为 2.5×2.2×0.10×3=1.65m³, 密度约 0.5g/cm³,则活性炭每次填充用量约为 0.825t,活性炭每季度更换一次,更换量为 3.3t/a。项目进入有机废气治理系统的有机废气为 0.888t/a,处理效率为 80%,则活性炭吸附处理量为 0.710t/a,按每吨 VOCs 需要 4 吨活性炭计算,则所需活性炭量约为 2.84t/a < 3.3t/a,项目活性炭吸附装置可满足对有机废气的吸要求,保证活性炭吸附装置的吸附效果。

综上所述,项目电泳、水转印、烘干工序有机废气采用活性炭吸附装置进行处理是可行的。

4、天然气热水锅炉燃烧废气

项目拟建热水锅炉天然气为燃料,天然气为清洁能源,其燃烧废气经收集后直接排放可满足广东省地方标准《锅炉大气污染物排放标准》(DB44/765-2019)表 2 新建锅炉大气污染物排放浓度限值,项目天然气锅炉燃烧废气经收集后,通过 50m 高排气筒排放。

5、无组织废气

建议尽量减少电镀废气的无组织排放,首先加强反应槽上方外溢废气的收集效率, 收集风口的进气尺寸,扩大进气口表面积,加大抽风效果,另外对喷淋塔加强日常维护 和管理,保证良好的处理效果,尽量减少无组织排放,另外对生产车间加强通风,保证 工人良好的工作环境。

综上所述,项目采取的废气污染防治措施,都能相对应地降低污染物排放量,使其达到相对应的排放浓度要求,不会对项目内部及周围大气环境造成明显影响。因此项目的废气处理设施具有技术可行性。

7.2废水污染控制措施及其可行性分析

7.2.1 生活污水污染控制措施及其可行性分析

根据工程分析,本项目生活污水排放量为 33.6t/d。生活污水以中等城市污水浓度估算,其 COD_{Cr} 为 250mg/L、氨氮为 25mg/L,则产生的污染物主要为 COD_{Cr} 和 NH_3 -N (约。

(1) 排污去向

项目位于中山市三角镇高平化工区电镀片区,属于三角镇生活污水处理厂配套管网集水范围。项目产生的生活污水经三级化粪池预处理达到广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段三级标准后,经市政污水管网引入三角镇生活污水处理厂进行统一处理。生活污水随后经进一步处理达广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段一级标准与《城镇污水处理厂污染物排放标准》(GB18918-2002)的一级 A 标准中的较严者后外排进入洪奇沥水道。

(2) 三角镇生活污水处理厂纳污能力

三角镇生活污水处理厂位于中山市三角镇的北部,采用 A/A/O 微曝氧化沟污水处理工艺,总设计规模为 4 万 m³/d(一、二期工程总处理水量)。三角镇生活污水处理厂截污干管一期工程的收集范围为:三角镇中心区工业和生活污水及高平工业区生活污水,服务面积为 15km²。目前,三角镇生活污水处理厂一、二期均已建成运行,且其配套管网已完成,并已投入正常运行。三角镇生活污水处理厂 2016 年的实际日处理量约 3.5 万吨,尚有足够能力接纳本项目排放的 1.8m³/d 的生活污水(本项目污水量仅占处理能力的 0.0045%)。项目外排生活污水经自建三级化粪池预处理后达到广东省《水污染物排放限值》(DB44/26-2001)第二时段三级标准,满足三角镇污水处理厂的纳污要求,即三角镇污水处理厂对本项目生活污水具备纳污可行性。

(3) 三角镇生活污水处理厂处理工艺

三角镇污水处理厂处理能力为 4 万吨/日,一、二期工程均采用 A/A/O 微曝氧化沟污水处理工艺。工艺流程示意图具体如下图所示。

本项目纳入生活污水处理厂的生活污水经上述措施处理后,外排废水水质可达广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段一级标准与《城镇污水处理厂污染物排放标准》(GB18918-2002)的一级 A 标准较严者,对纳污河道洪奇沥水道的影响不大。



图 7.2-1 三角镇生活污水处理厂工艺流程图

7.2.2 生产废水污染控制措施及其可行性分析

技改扩建后项目生产废水产生量为 237.28 吨/日,分类(前处理废水、综合废水、含铬废水、电镀镍废水、含氰废水、含银废水、混排废水、化学镍废水)收集达到中山市三角镇高平污水处理有限公司设计水质要求,并经各类污水管网引至中山市三角镇高平污水处理有限公司处理后,其中 40%处理达到广东省《电镀水污染物排放标准》(DB44/1597-2015)表 1 中珠三角排放限值后排入洪奇沥水道,其 60%处理达回用水标准后回用水管网回到本项目回用,废水回用率为 60%。

7.2.2.1 高平污水处理有限公司的情况

一、高平污水有限公司概况

中山市三角镇高平工业区始建于1998年,包含了印染、线路板、皮革、电镀等多种高污染行业聚集园区。为实现电镀园区的建设和环境保护相统一,政府共投入3000多万资金进行中山市三角镇高平污水处理有限公司(简称高平污水处理有限公司)的建设和四次技术改造。

电镀污水处理系统第一期工程设计处理能力为1000 吨/天,始建于1998 年,工艺设置是按照"三股污水"分类间歇式处理模式。第二期工程设计处理能力为5000 吨/天,建于2000 年,工艺设置按照"三股污水"分类连续处理;第三期工程设计处理能力为12000 吨/

天,建于2002年,工艺设置按照"五股废水"分类连续处理。三次技改后高平污水处理有限公司总占地面积约9亩。

目前,高平污水处理有限公司已完成第四期技术改造。设计处理规模为13200吨/天,运行规模为11000吨/天,中水回用6600吨/天;总回用率为60%,回用水分配给各厂的水量以各厂废水排放量的60%计算;原有用地9亩,另外新增用地10亩;废水分七类收集处理,分别为电镀镍废水,化学镍废水,含铬废水,含氰废水,综合废水,混排废水,前处理废水;废水处理达到广东省《电镀水污染物排放标准》(DB44/1597-2015)表1中珠三角排放限值。

二、高平污水处理有限公司进水水质要求

高平污水处理有限公司完成第四期技改后,设计处理规模为 13200 吨/天,运行规模为 11000 吨/天,中水回用 6600 吨/天,进水水质见下表。

废水种类					主	要污染物	刃浓度				
及小件矢	PH	COD	氰化物	Cr ⁶⁺	总铜	总镍	总锌	石油类	TP	TN	氨氮
前处理废 水	6.5-8	≤1500	≤0.2	≤0.1	≤0.3	≤0.1	≤1.0	≤300	≤60	≤80	≤30
电镀镍废水	6-6.5	≤350	≤0.2	≤0.1	≤0.3	≤120	≤1.0	≤2.0	≤2.0	≤2.0	≤2.0
化学镍废 水	6-6.5	≤350	≤0.2	≤0.1	≤0.3	≤120	≤1.0	≤2.0	≤2.0	≤2.0	≤2.0
含氰废水	7.5-8	≤700	≤150	≤0.1	≤60	≤0.1	≤30	≤2.0	≤2.0	≤2.0	≤30
含铬废水	3-5	≤300	≤0.2	≤160	≤0.3	≤0.1	≤1.0	≤2.0	≤2.0	≤2.0	≤2.0
综合废水	3+-5	≤400	≤0.2	≤0.1	≤80	≤0.1	≤80	≤2.0	≤40	≤80	≤30
混排废水	4-5	≤500	≤60	≤30	≤50	≤20	≤30	≤100	≤60	≤80	≤50

表 7.2-1 设计进水水质标准 单位: 除 PH 外, mg/l

三、高平污水处理有限公司废水处理工艺

高平污水处理有限公司接收的电镀废水的种类主要有化学镍废水、电镀镍废水、含 铬废水、含氰废水、综合废水、前处理废水、混排废水等,具体的各类废水处理工艺流 程如下:

①化学镍废水处理工艺

该类废水采用微电解法+化学氧化法破络处理该类废水,再经混凝沉淀法去除磷酸 盐和金属镍,达到去除废水中镍的目的。 高平污水处理公司处理该类废水设计规模达到 330 吨/天,本项目生产运营过程中产生化学镍废水约 5.20 吨/天,排入高平厂不会对其造成容积冲击负荷影响。该类废水经过上述控制条件处理后,镍离子去除率基本能达到 95%以上,同时对 COD 也具有一定的去除效果,经处理后的化学镍废水进入电镀镍废水系统进行再处理。

处理工艺流程图见下图:

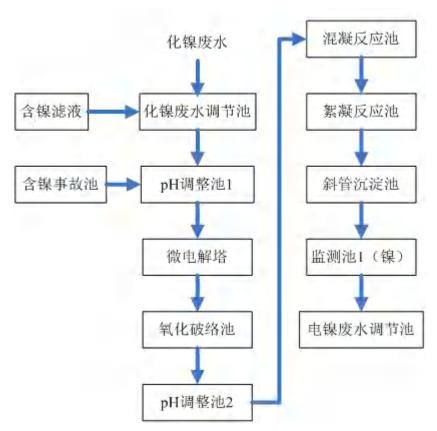


图 7.2-2 化学镍废水处理工艺

pH 调整池 I: 通过 pH 在线控制仪控制酸的投加量,将废水 pH 调到 2~3 左右,以满足氧化破络池的反应条件;采用曝气搅拌。

微电解塔:采用微电解破络,并去除部分COD;

氧化破络池:投加漂水,氧化破除氨氮,彻底破络,反应条件通过 ORP 控制仪控制, ORP 控制在 500mV~600mV;

pH 调整池 II: 通过 pH 在线控制仪控制碱的投加量,将废水 pH 调至 10~11,使 废水中的镍离子与碱生成沉淀去除;采用曝气搅拌。

混凝反应池: 投加 PAC, 形成絮体: 采用曝气搅拌。

斜管沉淀池:完成废水处理过程中的固液分离过程,降低废水中总镍含量;出水进入电镀镍废水调节池。

②电镀镍废水处理工艺

电镀镍废水主要来源于镀镍工序的清洗水,由于镍为第一类污染物,且为较贵重金属,单独收集处理,便于回收利用,然后依托高平水厂电镀镍废水处理单元处理。根据镍离子在废水中的存在形式,高平水厂采用化学氧化法破络,再经混凝沉淀去除该类废水中磷酸盐和金属镍。现高平水厂含镍废水设计处理水量 1100m³/d,本项目生产运营过程中产生电镀镍废水约 13.89 吨/天,排入高平厂不会对其造成容积冲击负荷影响,出水COD 及总镍指标基本达到表 3 标准,预处理后含镍废水进入回用系统处理,处理工艺流程图见下图:

图 7.2-3 电镀镍废水工艺流程图

pH 调整池 I: 通过 pH 在线控制仪控制酸的投加量,将废水 pH 调到 2~3 左右,以满足氧化破络池的反应条件;采用曝气搅拌。

氧化破络池: 投加 H₂O₂和 FeSO₄,氧化破除废水中的络合物,反应条件通过 ORP 控制仪控制,ORP 控制在 700mV~800mV;

pH 调整池 II: 通过 pH 在线控制仪控制碱的投加量,将废水 pH 调至 10~11,使废水中的镍离子与碱生成沉淀去除;采用曝气搅拌。

混凝反应池: 投加 PAC, 形成絮体: 采用曝气搅拌。

絮凝反应池:投加 PAM,形成大的絮体,以沉淀去除废水中的胶体沉淀等物质,降低废水中总镍含量:采用机械搅拌。

沉淀池:完成废水处理过程中的固液分离过程,降低废水中总镍含量;该池的尺寸为 Φ 9m×4.5m,表面负荷为 0.72 m3/m2·h。

中间水池(镍):沉淀池出水进入中间水池,加酸调至中性后,待进入中水回用系统。采用曝气搅拌。

UASB 法: 在厌氧颗粒污泥的作用下,废水中溶解的大分子有机物转化为小分子的有机物,提高废水的可生化性;

活性污泥池:在好氧菌的作用下,将废水中溶解的有机物转化为无机物,降低废水中的 COD,并在硝化菌的作用下,将废水中的氨氮转化为硝酸盐或亚硝酸盐,去除废水中的氨氮;该系统污泥浓度为 5000~6000mg/L。

MBR 智能反应系统: 通过 MBR 膜进行固液分离。

在 MBR 智能反应系统设置计量装置,并设置总镍在线监控装置。当总镍达到电镀 表三标准后再进入到回用系统,保证进入回用系统总镍总量达到排放标准。

③含铬电镀废水处理工艺

含铬电镀废水来源于镀铬、钝化、保护等工艺的清洗水。其含六价铬浓度 Cr⁶⁺≤250mg/L,pH 为 3~5。含铬废水的处理方法有化学法、离子交换法、电解法、活性炭吸附法等,常用化学还原法。化学还原法是利用硫酸亚铁、亚硫酸盐、二氧化硫等还原剂,将废水中 Cr⁶⁺还原成 Cr³⁺,再加碱调整 pH 值,形成 Cr(OH)₃ 沉淀除去,Cr(OH)₃ 的溶度积可以达到排放标准的要求。这种方法设备投资和运行费用低,处理效果好。含铬废水处理系统运行量 2200m³/d,进水主要污染物浓度:COD 约 200mg/L、总铬约 120 mg/L,出水浓度:COD 约 50 mg/L、总铬约 0.5 mg/L,去除率约 75%、99.6%,出水 COD 及总铬指标基本达到表 3 标准。主要工艺参数:HRT:6-8h、SRT:30d。预处理后含铬废水进入回用系统处理。含铬废水一般较为清洁,COD 浓度较低。但根据进水水质情况,有存在混排的可能性,为了保证废水处理系统的安全性,含铬废水也设置生化系统,预防混排对达标排放和回用水系统造成冲击。含铬废水处理流程图如下:



图 7.2-4 含铬废水处理工艺流程图

pH 调整池 I: 通过 pH 在线控制仪控制酸的投加量,将废水 pH 调到 2~3 左右,以满足还原反应的反应条件;采用曝气搅拌。

还原反应池:通过 ORP 控制仪控制亚硫酸氢钠的投加量,将废水 ORP 控制在 230mV~280 mV,使废水中的六价铬还原为三价铬;采用机械搅拌。

pH 调整池 II: 通过 pH 在线控制仪控制碱的投加量,将废水 pH 值调至 8~9,使废水中的三价铬与碱生成沉淀去除;采用曝气搅拌。

混凝反应池: 投加 PAC, 形成絮体。采用曝气搅拌。

絮凝反应池:投加 PAM,形成大的絮体,以沉淀去除废水中的胶体沉淀等物质,降低废水中总铬含量;采用机械搅拌。

预沉池:初步完成废水处理过程中的固液分离,降低 MCR 膜分离器的负荷。

MCR 膜池:过滤为沉淀完全的悬浮物,保证出水达标进入 RO 系统的要求。

监测池 1 (铬):对 MCR 膜池出水进行一级监测。 当总铬浓度超过 2mg/L 时,废水切换进入含铬事故池;当总铬浓度小于 2mg/L,大于 0.5mg/L 时,废水切换进入离子交换塔;当总铬达到表三标准时,进入监测池 2。

离子交换塔:应急处理含铬废水。

监测池 2 (铬): 设置六价铬、总铬在线监控装置。暂存含铬废水系统出水,根据 监测数据切换排水去向。达标后废水进入回用系统,不达标废水切换进入含铬废水事故 池。

④含氰废水处理工艺

含氰废水主要来源预镀铜,镀金、镀银及镀合金等清洗水。含氰废水必须单独收集破氰后再去除重金属离子。根据各种氰化电镀镀液的配方,氰化电镀过程中产生的含氰废水中除含有剧毒的游离氰化物外,尚有铜氰、镉氰、银氰、锌氰等络合离子存在,所以破氰后,重金属离子也将进入废水中。因此,在处理含氰废水时,也应包括重金属离子的处理。氰化物不能通过常规的沉淀等办法进行处理,必须将其分解为 C 和 N 才变为无毒产物。含氰废水处理,国内已有较成熟的经验。含氰废水的处理方法很多,如电解氧化法、活性炭吸附法,离子交换法、臭氧法和硫酸亚铁法等。目前国内外多采用碱性氯化法。含氰废水应分质单独设计一个处理系统,不应与其它电镀废水混合处理,尤其是混入镍、铁这一类会与氰发生反应形成络合物的离子,将会给处理带来困难。碱性氯化法原理介绍如下。碱性氯化法破氰分二个阶段:第一阶段是将氰氧化成氰酸盐,称"不完全氧化",反应式如下。

$$\longrightarrow \qquad \text{CN-+OCl-+H}_2\text{O} \qquad \text{CNCl+2OH-}$$

$$\longrightarrow \qquad \text{CNCl+2OH-} \qquad \text{CNO-+Cl-+H}_2\text{O}$$

CN一与 OCI 一反应首先生成 CNCI, CNCI 水解成 CNO 一的反应速度取决于 pH 值、温度和有效氯的浓度。pH 值越高,水温越高,有效氯浓度越高则水解的速度越快,而且在酸性条件下 CNCI 极易挥发,所以操作时必须严格控制 pH 值。

第二阶段是将氰酸盐进一步氧化分解成二氧化碳和氮气,称"完全氧化",反应式如下:

↑ ⇒
$$2\text{CNO} - +3\text{ClO} - +\text{H}_2\text{O}$$
 2CO₂ +N₂ +3Cl−+2OH−
↑ ⇒ 3Cl_2 +4OH− 2CO₂ +N₂ +6Cl−+2H₂O

含氰废水处理系统处理水量为 2200m³/d 进水主要污染物浓度: COD 约 600mg/L、氰化物约 90 mg/L, 出水浓度: COD 约 480 mg/L、氰化物约 0.2 mg/L, 去除率约 20%、99.7%, 出水氰化物指标基本达到表 3 标准,主要工艺参数: HRT: 2-3h。经破氰处理后的含氰废水进入综合废水中进行进一步处理。含氰废水处理系统采用原有破氰系统,

增加反应搅拌机,强化反应效果。为防止漂水的气味和氰化物的挥发,在含氰废水反应池上加盖。工艺流程图见下图:

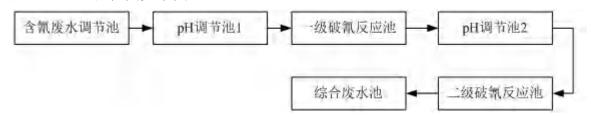


图 7.2-5 含氰废水处理工艺流程图

pH 调整池 I: 通过 pH 在线控制仪控制碱的投加量,将废水 pH 调到 10~11 左右,以满足一级破氰的反应条件;采用机械搅拌。

一级破氰池:通过 ORP 在线控制仪控制漂水的投加量,控制 ORP 至 350~400 之间,进行一级破氰,采用机械搅拌。

pH 调整池 II: 通过 pH 在线控制仪控制酸的投加量,将废水 pH 调到 7~8 左右,以满足二级破氰的反应条件;采用机械搅拌。

二级破氰池:通过 ORP 在线控制仪控制漂水的投加量,控制 ORP 至 600~650 之间,进行二级破氰,使氰化物完全破除;采用机械搅拌。

⑤综合废水处理工艺

综合废水主要来源于其它金属电镀工序中的清洗水。除了以上几种废水以外,其它不同镀种的废水的重金属化学性质相似,其氢氧化物的溶度积都可以满足排放标准的要求,因此合并一起处理,该股废水为综合废水,主要含有铁、锌、锡、铝、铜、钯等多种金属离子。由于镀仿金、镀焦磷酸铜等均会有络合物,因此综合废水中络合态重金属浓度和 COD 浓度也较高。综合废水处理系统需设置氧化破络工艺。加碱沉淀法需要注意考虑 pH 值控制条件和金属离子共存时相互作用的影响。各种金属离子去除的最佳 pH 值,一般控制 pH 为 8.5~9。综合废水处理系统运行量为 2200m³/d,进水主要污染物浓度: COD 约 300mg/L、总铜约 70 mg/L,出水浓度: COD 约 50 mg/L、总铜约 0.3 mg/L,去除率约 83.4%、99.6%,出水总铜指标基本达到表 3 标准。综合废水预处理出水和混排废水、前处理废水预处理出水混合进入到综合废水回用水系统。综合废水处理系统采用原有综合废水处理系统。处理流程图见下:

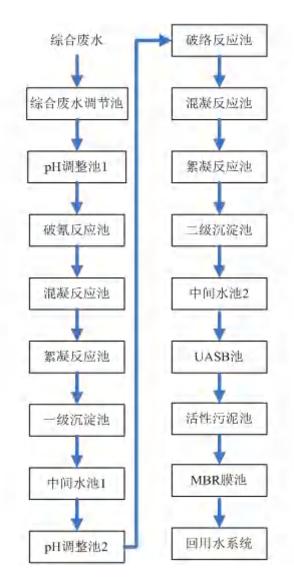


图 7.2-6 综合废水处理工艺流程图

pH 调整池:通过 pH 在线控制仪控制酸的投加量,将废水 pH 调到 2~3 左右,以满足氧化破络池的反应条件;采用曝气搅拌。

氧化破络池: 投加 H₂O₂和 FeSO₄,氧化破除废水中的络合物,反应条件通过 ORP 控制仪控制,ORP 控制在 700mV~800mV;采用机械搅拌。

pH 调整池 II: 通过 pH 在线控制仪控制碱的投加量,将废水 pH 调至 8.5~9.5,使废水中的重金属离子与碱生成沉淀去除;采用曝气搅拌。

混凝反应池:投加 PAC,形成絮体,以沉淀去除废水中的胶体沉淀等物质,降低废水中铜、锌等重金属离子、部分 COD 含量,采用机械搅拌。

絮凝反应池:投加 PAM,形成大的絮体,以沉淀去除废水中的胶体沉淀等物质,降低废水中铜、锌等重金属离子、部分 COD 含量;反应池采用机械搅拌。

沉淀池:完成废水处理过程中的固液分离过程,降低废水中铜、锌等重金属离子、COD含量;该池的尺寸为 Φ 15m×4.5m(2座),表面负荷为 0.7 m³/m²·h。

中间水池(综): 沉淀池进入中间水池(综),加酸调至中性后,待进入中水回用系统。采用曝气搅拌。

UASB 法: 在厌氧颗粒污泥的作用下,废水中溶解的大分子有机物转化为小分子的有机物,提高废水的可生化性;

活性污泥池:在好氧菌的作用下,将废水中溶解的有机物转化为无机物,降低废水中的 COD,并在硝化菌的作用下,将废水中的氨氮转化为硝酸盐或亚硝酸盐,去除废水中的氨氮;

MBR 智能反应系统: 在通过 MBR 膜进行固液分离。

⑥前处理废水处理工艺

前处理废水主要来自电镀工艺的预处理阶段,即对镀件进行清洗和除油除腊等处理过程中产生的废水,前处理废水污染物主要为 COD、总磷,废水可生化性较差。前处理废水预留高级氧化池,主要功能包括:当废水进水浓度超过设计进水水质时,废水进入高级氧化池,去除废水中污染物,降低后续生化负荷;当 MBR 膜池内 COD 浓度富集时,返回到高级氧化池进行再处理,保证系统 COD 稳定达标。前处理先经混凝沉淀预处理部分 COD 和 TP,经过混凝沉淀去除少量重金属离子。然后进入生化系统(厌氧+MBR)进行处理。前处理废水处理水量为 2200m³/d。主要工艺参数: HRT: 6-8h、SRT: 30d。预处理后的前处理废水进入回用系统进行回用。处理流程图如下:

图 7.2-7 前处理废水处理工艺流程图

pH 调整池 1: 通过 pH 在线控制仪控制酸的投加量,调节废水 pH 值至 2~3,以满足微电解反应条件;

微电解池:在池中预加微电解填料,利用微电解原理将大分子有机物分解为小分子有机物,并降解一部分 COD,降低废水中的有机物含量,提高废水可生化性,并能起到破络的作用。该池的有效容积为 202m³,停留时间为 2.2h。

氧化破络合池:通过投加 H₂O₂和 FeSO₄,采用芬顿法氧化破除废水中的络合物与高分子有机物,反应条件通过 ORP 控制仪控制,ORP 控制在 700mV~800mV;采用机械搅拌;

pH 调整池 2 通过 pH 在线控制仪控制碱的投加量,调节废水 pH 值至 8~9,以满足混凝沉淀的反应条件。

混凝反应池:投加 PAC,形成絮体,以沉淀去除废水中的胶体沉淀等物质,如正磷酸盐,部分油类、COD等;

絮凝反应池:投加 PAM,形成大的絮体,以沉淀去除废水中的胶体沉淀等物质。 采用机械搅拌。

沉淀池: 完成废水处理过程中的固液分离过程,降低废水中 TP、油类、COD 的含量;该池的尺寸为 $\Phi12m\times4.5m$,表面负荷为 $0.80~m^3/m^2\cdot h$ 。

中间水池(前): 沉淀池出水进入中间水池,加酸调至中性后,待进入生化处理系统;

UASB 法: 在厌氧颗粒污泥的作用下,废水中溶解的大分子有机物转化为小分子的有机物,提高废水的可生化性;

活性污泥池:在好氧菌的作用下,将废水中溶解的有机物转化为无机物,降低废水中的 COD,并在硝化菌的作用下,将废水中的氨氮转化为硝酸盐或亚硝酸盐,去除废水中的氨氮;

MBR 智能反应系统: 通过 MBR 膜进行固液分离。

⑦混排废水处理工艺

混排废水主要来自车间混排、跑冒滴漏废水、地面冲洗等产生的废水。混排废水成分复杂,含有氰化物、有机物、六价铬、其他重金属离子等。由于污染物的处理方式和反应条件均不相同,因此需针对各污染物逐项去除。为了避免废水中对各污染物的处理效果相互影响,节省混排废水的费用,对于混排废水污染物的处理顺序很重要。混排废水一般先破氰,后破络,然后混凝沉淀去除重金属,最后进入生化系统去除 COD。混排废水的破氰工艺选择两级破氰工艺,破络工艺选择化学还原工艺处理。设计混排废水水量约为 1100m³/d。主要工艺参数:HRT:6-8h、SRT:30d 经预处理后的混排废水进入回用系统。处理流程图如下:

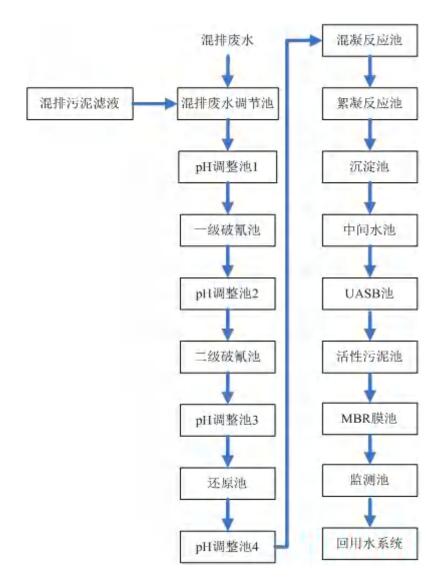


图 7.2-8 混排废水处理工艺流程图

pH 调整池 I : 通过 pH 在线控制仪控制碱的投加量,将废水 pH 调到 $10\sim11$ 左右,以满足一级破氰的反应条件;

一级破氰池:通过 ORP 在线控制仪控制漂水的投加量,控制 ORP 至 350~400mv 之间,进行一级破氰;采用机械搅拌。

pH 调整池 II: 通过 pH 在线控制仪控制酸的投加量,将废水 pH 调到 7~8 左右,以满足二级破氰的反应条件;

二级破氰池:通过 ORP 在线控制仪控制漂水的投加量,控制 ORP 至 600~650mv 之间,进行二级破氰,使氰化物完全破除;采用机械搅拌。

pH 调整池III: 通过 pH 在线控制仪控制酸的投加量,将废水 pH 调到 2~3 左右,以满足还原反应的反应条件;

还原反应池:通过 ORP 控制仪控制亚硫酸氢钠的投加量,将废水 ORP 控制在230mV~270 mV,使废水中的六价铬还原为三价铬;该工艺采用机械搅拌。

pH 调整池IV: 通过 pH 在线控制仪控制碱的投加量,将废水 pH 值调至 8~9,使废水中的三价铬与碱生成沉淀去除;

混凝反应池: 投加 PAC, 形成絮体。

絮凝反应池:投加 PAM,形成大的絮体,以沉淀去除废水中的胶体沉淀等物质,降低废水中重金属;采用机械搅拌。

沉淀池:完成废水处理过程中的固液分离过程,降低废水中总铬含量;该池的尺寸为 Φ 9m×4.5m,表面负荷为 0.72m³/m²·h。

中间水池(混): 沉淀池出水进入中间水池,加酸调至中性后,待进入中水回用系统。该池的有效容积为37.8 m³,停留时间为0.8h。

UASB 法: 在厌氧颗粒污泥的作用下,废水中溶解的大分子有机物转化为小分子的有机物,提高废水的可生化性;

活性污泥池:在好氧菌的作用下,将废水中溶解的有机物转化为无机物,降低废水中的 COD,并在硝化菌的作用下,将废水中的氨氮转化为硝酸盐或亚硝酸盐,去除废水中的氨氮;污泥浓度为 5000~6000mg/L。

MBR 智能反应系统: 通过 MBR 膜进行固液分离。

⑧膜脓液处理工艺

含铬废水、含镍废水、含铜废水、综合废水、前处理废水的回用系统中会产生一定量的浓液,该部分废水 COD 含量在 300mg/L 以下,并含有金属离子等,因此需进一步处理。根据广东省地方标准广东省《电镀水污染物排放标准》(DB44/1597-2015)表 1中珠三角排放限值要求,一类污染物必须在车间或生产设施废水排放口单独达标。本工艺对膜浓液中一类污染物未分开进行单独处理,主要从以下几个方面考虑:

1) 项目对于含铬废水,含镍废水及混排废水三类含有一类污染物的废水单独设置全因子达标设施(物化预处理+水解酸化+MBR 膜生物反应器),MBR 膜生物反应器出水一类污染物的浓度可达到最低检测限值,完全满足广东省地方标准《电镀水污染物排放标准》(DB44/1597-2015)表 1 中珠三角排放限值标准要求,再进入RO系统;从总量控制角度分析,已经满足一类污染物单独达标的要求。

- 2) 如政府等相关部门后期对电镀行业一类污染物排放提出更高要求,需考虑将一类污染物废水单独回用,其膜浓液单独处理;本工艺可根据上述要求作出相应的修改。
- 3) 本工艺从减少占地面积、基建/设备投资及运行管理等多方面考虑,在保证一类污染物排放达标的前提下,对膜浓液中一类污染物暂时按混合处理设计。

各部分废水回用系统产生的膜浓液进入膜浓液调节池,再进行处理。由于膜浓液中含盐量较高,有机碳源有限,为保证脱氮除磷所需的碳源,将预处理后的前处理浓液混入厌氧段,提高生化系统的处理效果,降低营养盐的投加费用。膜浓液总水量为4400m³/d,分两套并联运行,主要运营参数: HRT: 20h、SRT: 60d, COD 去除率能稳定85%以上,能确保外排尾水全因子达标。处理流程图如下:

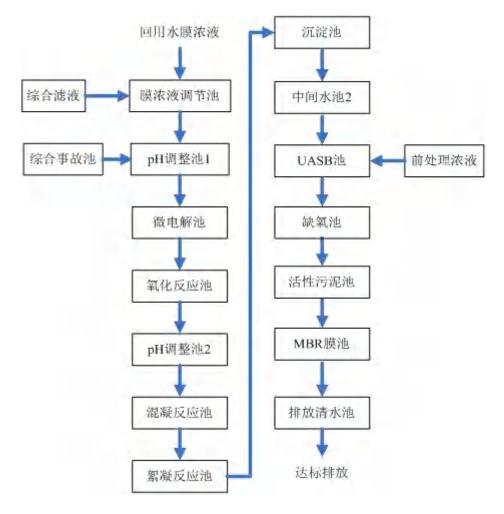


图 7.2-9 膜浓液处理工艺流程图

pH 调整池 1: 通过 pH 在线控制仪控制酸的投加量,调节废水 pH 值至 2~3,以满足 微电解反应条件;

微电解池:在池中预加微电解填料,利用微电解原理将大分子有机物分解为小分子有机物,并降解一部分 COD,降低废水中的有机物含量,减轻后续生化系统压力;该池的有效容积为 202m³,停留时间为 2.2h。

氧化破络合池:通过投加 H₂O₂和 FeSO₄,采用芬顿法氧化破除废水中的络合物与高分子有机物,反应条件通过 ORP 控制仪控制,ORP 控制在 700mV~800mV;采用机械搅拌;

pH 调整池 1: 通过 pH 在线控制仪控制碱的投加量,调节废水 pH 值至 8~9,以满足混凝沉淀的反应条件。

混凝反应池: 投加 PAC, 形成絮体。

絮凝反应池:投加 PAM,形成大的絮体,以沉淀去除废水中的胶体沉淀等物质,如正磷酸盐,部分油类、COD等;采用机械搅拌。

沉淀池: 完成废水处理过程中的固液分离过程,降低废水中 TP、油类、COD 的含量; 该池的尺寸为 $\Phi12m\times4.5m$,表面负荷为 $0.80~m^3/m^2\cdot h$ 。

中间水池(膜): 沉淀池出水进入中间水池,加酸调至中性后,待进入生化处理系统; 该池的有效容积为 50m³,停留时间为 0.55h。

UASB 法: 在厌氧颗粒污泥的作用下,废水中溶解的大分子有机物转化为小分子的有机物,提高废水的可生化性;

厌氧池:聚磷在厌氧条件下释放磷,并吸收低脂肪酸等易降解有机物,使污水中磷的浓度、COD浓度有所下降;另外氨氮因细胞的合成而被去除一部分,使氨氮浓度下降。

缺氧池:在缺氧条件下,反硝化菌利用污水中的有机物做碳源,将内回流混合液中带入的硝态氮和亚硝态氮还原为氮气,COD浓度降低,总氮浓度降低。混合液回流比不小于200%。

活性污泥池:在好氧菌的作用下,将废水中溶解的有机物转化为无机物,降低废水中的 COD;并在硝化菌的作用下,将废水中的氨氮转化为硝酸盐或亚硝酸盐,去除废水中的氨氮;总磷随着聚磷菌的过量摄取,浓度下降,并通过剩余污泥的排放,将磷去除。

MBR 智能反应系统: 通过 MBR 膜进行固液分离。

9、镍回用系统工艺

铬、镍废水经"破络、混凝、絮凝、MBR 膜"后,去除大部分对后续回用系统有害的物质:如有机物、六价铬、氰化物、悬浮物等,进入铬镍回用处理系统。铬镍废水回用系统主流程如下:

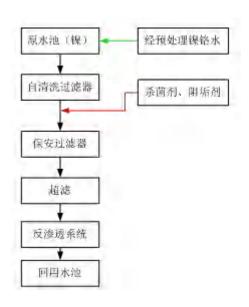


图 7.2-10 铬镍回用水工艺流程图

⑩中水回用系统

综合池、混排、前处理废水分别经破络、破氰、隔油后,再经"混凝、絮凝、MBR 膜"后,去除大部分对后续回用系统有害的物质:如有机物、六价铬、氰化物、悬浮物等,进入综合回用处理系统。总进水量 9870m³/d,回用水量为 6600m³/d。

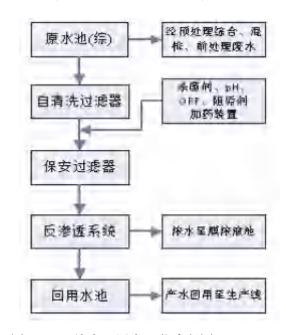


图 7.2-11 综合回用水工艺流程图

7.2.2.2 高平污水处理有限公司出水水质

含铬废水、电镀镍废水和化学镍废水,均属于第一类控制污染物,第一类污染物应 在车间或车间处理设施排放口处达标排放。因此,高平污水处理有限公司将含铬废水、 电镀镍废水和化学镍废水处理系统单独设置在污水处理车间内,各企业电镀车间的含铬 废水、电镀镍废水和化学镍废水通过专用管道输送到高平污水处理有限公司的污水处理 车间内进行预处理。

各类生产废水经过上述处理工艺处理后,可稳定达到广东省《电镀水污染物排放标准》(DB44/1597-2015)表1中珠三角排放限值标准,具体指标如下:

序号	污染物	排放限值	污染物排放监控位置	
1	总铬 (mg/l)	0.5	生产设施废水排放口	
2	六价铬 (mg/l)	0.1	生产设施废水排放口	
3	总镍 (mg/l)	0.5	生产设施废水排放口	
4	总镉 (mg/l)	0.01	生产设施废水排放口	
5	总银 (mg/l)	0.1	生产设施废水排放口	
6	总铅 (mg/l)	0.1	生产设施废水排放口	
7	总汞 (mg/l)	0.005	生产设施废水排放口	
8	总铜 (mg/l)	0.5	废水总排放口	
9	总锌 (mg/l)	1.0	废水总排放口	
10	总铁 (mg/l)	2.0	废水总排放口	
11	总铝 (mg/l)	2.0	废水总排放口	
12	рН	6-9	废水总排放口	
13	悬浮物(mg/l)	30	废水总排放口	
14	化学需氧量(mg/l)	80	废水总排放口	
15	氨氮(mg/l)	15	废水总排放口	
16	总氮 (mg/l)	20	废水总排放口	
17	总磷 (mg/l)	1.0	废水总排放口	
18	石油类(mg/l)	2.0	废水总排放口	
19	氟化物(mg/l)	10	废水总排放口	
20	总氰化物(mg/l)	0.2	废水总排放口	
单位产品基准排	多层镀	250	排水量计量位置与污染排放监控位置	
水量, L/m²	单层镀	100	一致	

表 7.2-2 外排废水排放指标

高平污水处理厂设置了两套回用水处理系统,部分生产废水经上述两套回用水系统 处理后回用到车间,回用水水质标准如下表所示。

表 7.2-3 回用水水质标准

项目	生活饮用水标准	污水处理后执行标准	本项目执行标准
色度	≤15 倍	3 倍	3 倍
嗅	/	无	无
浊度	1 NTU	1 NTU	1 NTU
PH	6.5-8.5	6.5-7.5	6.5-7.5
电导率	50-500 μs/cm	150 μs/cm	150 μs/cm
COD≤	$\leq 3 \text{mg/l}$	5mg/l	5mg/l

从上表可知高平污水处理有限公司处理后的回用水水质略优于自来水水质,且满足本改扩建项目回用水水质要求,完全能作为本改扩建项目电镀生产线用水。目前整个电镀园区内电镀企业最新环评批复中已经明确规定各生产企业必须将企业的回用率达到60%以上,且不允许厂内对生产废水进行中水回用,所有的回用水必须采用高平污水处理有限公司的回用。高平污水处理有限公司的回用水规模是按照处理规模的60%设计运行,同时高平污水处理有限公司不接受来自非电镀园区内企业的电镀废水,所以高平污水处理有限公司生产的电镀回用水能全部被各个电镀企业接纳使用。

表 7.2-4 高平污水处理有限公司废水种类及水量

序号	废水类别	处理水量(m³/d)	比例 (%)	回用水量(m³/d)	
1	含铬废水	2200	20		
2	化学镍废水	330	3	1920	
3	电镀镍废水	770	7		
4	含氰废水	2200	20		
5 综合废水		2200	20	4680	
6	前处理废水	2200	20	4000	
7	混排废水	1100	10		
合	计	11000	100	6600	

上表可知:高平污水处理有限公司日回用水量为6600吨,总回用率为60%。回用水分配给各厂的水量以各厂废水排放量的60%计算。

综上所述,高平污水处理有限公司对电镀废水分类收集、分类处理符合电镀废水的处理原则,处理效果较好。处理后出水可稳定达到广东省《电镀水污染物排放标准》(DB44/1597-2015)表1中珠三角排放限值标准,从技术上看电镀废水处理方案是可行的。

7.2.2.3 废水处理现状及接纳可行性

本搬迁技改扩建项目位于高平化工区电镀片区,属于高平污水处理有限公司的纳污范围,纳污管网也已建设完成。且目前高平污水处理有限公司已完成第四期技术改造,已投入运行,且出水水质可稳定达到广东省《电镀水污染物排放标准》(DB44/1597-2015)表1中珠三角排放限值标准。

根据工程分析可知, 技改扩建后项目生产废水产生量为 237.28 吨/日, 仅占高平污 水处理有限公司处理能力(11000t/d)的2.156%。项目生产废水分为8股,分别为前处 理废水、综合废水、含铬废水、电镀镍废水、含氰废水、含银废水、混排废水、化学镍 废水。项目前处理废水产生为 10.56t/d, 高平污水处理有限公司设计前处理废水 2200t/d, 占比相对较小,进水主要污染物浓度: COD约 800mg/L,接纳进水浓度: 1500mg/L, 完全满足高平污水处理有限公司的进水要求,且占比较小。项目电镀镍废水产生量为 14.4t/d, 高平污水处理有限公司设计前处理废水 770t/d, 占比相对较小, 进水主要污染 物浓度: COD约 150mg/L、总镍 120mg/L,接纳进水浓度: COD约 350mg/L、总镍 120mg/L; 基本达到高平污水处理有限公司进水要求;项目含氰废水产生量为 25.93t/d,高平污水 处理有限公司设计前处理废水 2200t/d, 占比相对较小, 进水主要污染物浓度: COD 约 200mg/L、氰化物 80mg/L、总铜 3mg/L,接纳进水浓度: COD 约 700mg/L、氰化物 150mg/L; 远小于高平污水处理有限公司接纳标准;项目综合废水产生量为75.46t/d;高平污水处 理有限公司设计前处理废水 2200t/d, 占比小, 进水主要污染物浓度: COD 约 200mg/L、 总磷 20mg/L,接纳进水浓度: COD 约 400mg/L、总磷 40mg/L,远小于高平污水处理有 限公司接纳标准;项目混排废水产生量为 6.65t/d, 高平污水处理有限公司设计前处理废 水 1100t/d, 占比小, 进水主要污染物浓度: COD 约 200mg/L、氰化物 15mg/L、总铜 2mg/L、 总镍 20mg/L、总磷 5.0mg/L, 接纳进水浓度: COD 约 500mg/L、氰化物 60mg/L、总铜 50mg/L、总镍 20mg/L、总磷 60mg/L; 完全达到高平污水处理有限公司接纳标准,且远 小于它的接纳浓度。

根据中山市三角镇高平污水处理有限公司在线监测数据,2019年7月实际平均接收水量约为4051.71吨/天,2019年8月实际平均接收水量约为3905.54吨/天,2019年9月实际平均水量约为3939.00吨/天,远小于高平污水处理有限公司处理能力(11000t/d)。

根据以上分析可知,项目产生的废水只要达标排入高平污水处理有限公司,对其处理能力不会造成太大的影响。项目使用的原辅材料中含磷的原料相对较小,对高平污水处理有限公司终端处理的影响相对较小,达到高平污水处理有限公司接纳标准后对高平污水处理有限公司影响较小,本项目各类的生产废水其产生浓度可全部达到高平污水处理有限公司进水的接纳标准;故本项目生产废水通过分类废水管网直接排入园区内的高平污水处理有限公司进行深度处理达标后回用于生产或排放至纳污水体。高平污水处理有限公司污水管网已经基本覆盖中山市三角镇高平电镀基地,管网已可实现衔接。具有可接纳性。

7.3噪声污染控制措施及其可行性分析

本次搬迁技改扩建项目噪声源主要是生产设备、各类风机、各类泵等,噪声源强及治理措施如下表所示。

序号	机械名称	噪声等级 dB(A)	排放特征	防治措施		
1	电镀槽电机	65-70				
2	风机	75-80		合理布局,安装消声减		
3	泵	70-80	连续	振降噪设施,墙体隔音,		
4	抽风机	70-80	上	加强厂界绿化,加强员		
5	熔锡炉	65-70		工防护,文明生产等		
6	空压机	75-80				

表 7.3-1 生产设备噪声值(离声源 1m 处)

项目采取的噪声治理措施有:

- (1) 从噪声源入手,在满足工艺要求的前提下,选择低噪声的设备,主要生产设备均布置在室内,对噪声较大的设备基础进行减振防噪处理;
- (2) 在设备、管道设计中,注意防震、防冲击,以减轻振动噪声,并注意改善气体输流时流畅状况,以减轻空气动力噪声;
 - (3) 对风机、泵等除设置减振基础外,再设置隔音罩进一步降低噪声;
 - (4) 加强噪声设备的维护管理, 避免因不正常运行所导致的噪声增大。

各类噪声源采取上述措施后,可降低噪声源强 20~25dB(A),厂区边界噪声达《工业企业厂界环境噪声排放标准》(GB12348-2008)2类标准要求,则项目噪声经治理后对周边声环境影响不大。

7.4固体废物污染控制措施及其可行性分析

7.4.1 固体废物处理处置措施

本项目运营期产生的固体废物主要包括:不合格产品、一般原材料废包装、危险化学品废包装、废滤芯、废槽渣、废液、废 RO 反渗透膜、废离子交换树脂和生活垃圾等。危险化学品废包装、废滤芯、废槽渣、废液、废离子交换树脂等危险废物定期交由具有相关危险废物经营许可证的单位处置;废 RO 反渗透膜由设备保养公司更换并回收;不合格产品、一般原材料废包装交废旧物资回收公司处理;生活垃圾交环卫部门处理。

7.4.2 固体废物处理措施技术可行性论证

- (1)项目在生产过程中产生的不合格产品、一般原材料废包装交废旧物资回收公司处理。
 - (2) 纯水制备系统废物由设备保养公司更换并回收。
- (3)生活垃圾:生活垃圾交环卫部门定期清理,统一处理,并对垃圾堆放点进行消毒,杀灭害虫,以免散发恶臭,孽生蚊蝇。
- (4) 危险化学品废包装、废滤芯、废槽渣、废液、废离子交换树脂等危险废物定期交由具有相关危险废物经营许可证的单位处置。根据《危险废物贮存污染控制标准》(GB18596-2001)及其修改单的相关条款,贮存设施必须符合以下要求:

危险固废储存区应根据不同性质的危废进行分区堆放储存,存储区必须严格按照《危险废物贮存污染控制标准》(GB18597-2001)及其 2013 修改单的要求建设和维护使用;对堆放间,建设单位对堆放间进出口设置 0.2m 高的墁坡,并对墙体及地面做防腐、防渗措施,地面基础必须防渗,防渗层为至少 lm 厚粘土层(渗透系数≤10⁻¹cm/s),或 2mm 厚高密度聚乙烯,或至少 2mm 厚的其它人工材料,渗透系数≤10⁻¹cm/s;衬里要能够覆盖废物或其溶出物可能涉及到的范围;衬里材料与堆放的废物相容,不会对地下水产生污染;泄漏事故处理时会有地面清洗废水,故建设单位还应设置排水收集系统,引至应急事故池,则泄漏的化学品及事故处理废水不会渗入地下而污染地下水。

危险废物应当由具有危险废物处理资质的公司进行安全处置,并按照《广东省实施 <危险废物转移联单管理办法>的规定》填写危险废物转移联单,向危险废物移出地和接 受地的县级以上地方人民政府环境保护行政主管部门报告。建设项目产生的危险废物必 须向中山市环保局申请报告,并将危险废物交由有相应资质的企业处理,禁止随意倾倒或交给没有资质的公司或个人,防止发生意外风险事故。本项目建设单位对危险废物的管理制度为:将生产过程产生的危险废物储存于专门设定的危废暂存区域,并贴上标签,注明废物种类、数量、时间。将废物转移时由具有危险废物处理资质的公司开具正式转移单。关于危险废物转移报批程序。危险废物转移报批程序如下:

- ①由危险移出单位提出有关废物转移或委托处理的书面申请,并填写《中山市危险 废物转移报批表》,提供废物处理合同、协议。跨市转移的,须填写《广东省危险废物 转移报批表》。
- ②每转移一种危险废物,填写《中山市危险废物转移报批表》一式两份,须列明废物的危险性、类别、转移的始末时间、批次、产生工序等。为减低转移时发生的风险,应尽量减少转移批次。
- ③《中山市危险废物转移报批表》经市环保局签署审批意见。同意转移的,发放危险废物转移联单。
- ④定期转移的危险废物,每半年报批一次(废物处理签定合同、协议必须有效), 非定期转移危险废物的,每转移一批,报批一次。

根据本项目固废治理措施费用预算,固废治理投资为 50 万元人民币,占总投资的 2%,占总投资比例很小,在经济上是可行的。

7.5环境风险防范措施及应急要求

7.5.1 风险管理及减缓措施

1、风险管理

415

根据国家环保局的相关要求,通过对污染事故的风险评价,各有关企业单位应加强安全生产管理,制订重大环境事故发生的应急工作计划,消除事故隐患的实施及突发性事故应急办法等。

风险管理制度方面的主要措施有:

①强化安全、消防和环保管理,建立管理机构,制订各项管理制度,加强日常监督检查。必须落实"安全第一、预防为主"的安全生产方针,管生产必须管安全,安全促进生产,建立岗位安全责任制,把责、权、利统一起来,达到分工明确,责权统一,机构

精干,形成网络,有利于协作的目的。

- ②贮存的药品应按性质分别贮放,并设置明显的标志,各贮罐区应设立管理岗位, 严格看管检查制度,防止危险品泄漏。
 - ③各类危险化学品应计划采购、分期分批入库,严格控制贮存量。
- ④项目所涉及的剧毒危险品种类较多,必须从运输、贮存、管理、使用、监测、应 急各个方面全时段、多角度的做好防范措施。剧毒化学品需贮存于专用仓库,严格执行 《危险化学品安全管理条例》等有关法规和制度,并制定剧毒品遗失、泄漏等风险的应 急预案。
- ⑤设立厂内急救指挥小组,并和当地事故应急救援部门建立正常联系,一旦出现事故能立刻采取有效救援措施。
- ⑥安全培训教育。包括以下 4 个方面的内容: a.生产安全法规教育,包括国家颁布的与本项目有关的法令、法规、国家标准及结合本项目自身特点而制定的安全规程; b. 生产安全知识教育,让员工了解一般生产技术,一般安全技术和专业安全技术; c.生产安全技能教育,通过对作业人员各种技能的训练,使其安全技能、实际操作能力有所提高; d.安全态度教育,提高生产人员安全意识,加强员工对生产过程中使用原料的认识,杜绝事故发生的可能性。
- ⑦做好生产安全检查工作。其基本程序如下: a.检查准备阶段,建立一个适应检查工作需要的组织领导,适当配备检查力量,集中培训安全检查人员,明确检查步骤和路径,分析可能会遇到的疑难问题及其处理方法; b.检查实施阶段,深入检查现场,按要求逐项逐条、逐个设备、逐个场所进行检查,并做好检查记录,检查中发现的问题应和被检查人员交换意见,指出隐患和问题所在,并告诉他们怎样才正确及处理意见; c.检查结束阶段,根据检查的结果,及时编写出检查报告,对检查发现的问题,应尽快限期整改,并要明确整改负责人的责任。
- ⑧建立健全防火安全规章制度并严格执行。根据一些地区的经验,防火安全制度主要有以下几种: a.安全员责任制度,主要把每个工作人员在业务上、工作上与消防安全管理上的职责、责任明确。b.防火防爆制度,是对各类火种、火源和有散发火花危险的机械设备、作业活动,以及可燃、易燃物品等的控制和管理。c.用火审批制度,在非固定点进行明火作业时,必须根据用火场所危险程度大小以及各级防火责任人,规定批准权限。d.安全检查制度,各类储存容器、输送设备、安全设施、消防器材,进行各种日416

常的、定期的、专业的防火安全检查,并将发现的问题定人、限期落实整改。e.其他安全制度,如外来人员和车辆入库制度,临时电线装接制度,夜间值班巡逻制度,火险、火警报告制度,安全奖惩制度等。

⑨规范操作,减少人为事故的发生。如含氰废水在遇到酸洗废水时,能产生氰化氢气体,一般情况下,操作工人不能很好地熟悉这种情况,容易发生氰化氢中毒事故,因此,制定各种操作规范,加强监督管理,严格分流废水进行处理,避免事故的发生。取用危险化学品后必须关紧容器,如果操作工人不能很好地完成这种情况,容易发生泄漏事故;电镀液的配制和使用过程必须规范,由专人负责,杜绝因人工操作不当或事故排放而导致电镀液对员工、周围人群和环境造成影响的可能性。因此,制定各种操作规范,加强监督管理,严格各贮罐区的看管检查制度,避免事故的发生。

2、风险减缓措施

风险事故的发生往往是由于管理不当、操作失误等等引起的。因此,要从管理、操作方面着手防范事故的发生,建立健全的制度,采取各种措施,设立报警系统,杜绝事故发生。本项目首先是生产运营、贮存、运输等系统自身要从安全设计、设备制造、建设施工、生产管理等方面坚决落实,这是减少环境风险的基础。其次,加强原辅材料的监控和限制。

表 7.5-1 预防风险工程防治对策

事故类型	工程防治对策							
卫生防护系统	厂区布置	1.厂区总平面布置要符合防范事故要求,有应急救援设施及救援通道、应急 疏散及避难场所。 2.危险化学品的贮存地点、设施和贮存量与环境保护所要求的相符。 3.植树绿化,保护厂区周围生态环境。						
化学品	溢出监测	1.包装的结构、材料应与贮料条件相适应 2.药水槽设高液位报警器,高液位停泵设施,设立检查制度 3.设截止阀、流量检测和检漏设备 4.设仪器探头及外观检查等监测漏出手段						
""	防止溢出 扩散	1.建设备防火堤,应有足够的容量和干舷,严格按设计规范设置排水阀和排水道。 2.生产线地表铺设防渗及防扩散的材料 3.设专门废水处理系统,切水阀设自动安全措施						
火灾爆 炸	设备安全 管理	1.根据规定对设备进行分级 2.按分级要求确定检查频率,保存记录以备查 3.建立完善的消防系统						

		4.在爆炸危险区域内的照明、电机等电力装置的选型设计,结合其所在区域的防爆等级,严格按照《爆炸和火灾危险环境电力装置设计规范》GB50058-92的要求进行。
		1.了解熟悉各种物料的性能,将其控制在安全条件内
	贮料管理	2.采取通风手段,并加强监测,使物料控制在爆炸下限
		3.各类包装的布置必须符合相关设计标准
	防爆	1.控制高温物体着火源、电气着火源及化学着火源
	別療	2.设立防爆检测和报警系统
	安全自动	1.使用计算机进行物料储运的自动监测和计量
	管理	2.使用计算机控制装卸等作业,以实现自动化和程序化
废水处	 自动管理	1.严格规章制度, 专人负责制度
理设施	与监测	2.定期监测,出现超标,立即停止排放。
全以旭	一) 皿 枳	3.设置废水缓冲池,其容量至少能容纳一班的排水量。
运输系	严格控制	1.需要其它供应商供货的,应要求其提供资质证明
统) 俗红中	2.使用合格运输工具及聘请有资质的运输人员

电镀车间使用的剧毒化学品发生中毒的主要原因是违反操作规程、设备事故以及缺少必要的职业卫生防护知识,企业应减少各种职业伤害要: (1)加强职业卫生管理措施:制订职业安全卫生管理制度、操作规程、有关职业卫生防护办法和应急救援方案,同时开展职业卫生的培训和宣传工作,加强职业卫生工作的检查,做到安全生产,文明生产。 (2)设备技术的措施:对生产工艺进行改造、对生产场所进行必要的隔离封闭和通风排毒等。 (3)卫生保健措施:开展健康监护、做好个人防护等。 (4)急性中毒的现场抢救:重点加强急救知识的培训和演练。

建设单位应制定严格的剧毒化学品管理制度,确保剧毒品的安全贮存和使用,以防止可能造成的危害。

7.5.2 危险化学品事故防范措施

1、危险化学品车间生产泄漏的防范措施

- (1) 一旦发生泄漏,泄漏物质可通过防泄漏沟进入事故池收集。吸收物和事故收集池中的泄漏物和清洗水均为危险废物,交由有资质的单位处理。
- (2)泄漏控制后及时清理地面以及防泄漏沟,残留化学品采用中和、清洗剂清洗等方法以消除泄漏点残留毒性。
- (3)使用堵漏工具箱对泄漏的酸碱性存储地进行堵漏;同时化学品存储仓库设置 围坎,可防止溢流至车间内。

2、运输过程环境风险应急处理措施

根据本项目性质, 危险化学品运输的风险应急处理措施包括:

- (1) 发生固态化学品泄漏后应及时收集并清扫附近路面避免有毒物质毒性残留;
- (2)发生液态化学品泄漏后,应迅速使用石灰、沙土等进行掩盖,初步削减其毒性并防止泄漏扩散,若材料不够,则迅速在附近掘取沙土掩盖泄漏物。
- (3)发生泄漏后应迅速通知当地环保、危险废物处理部门,对泄漏事故和泄漏化 学品进行妥善处理。

3、危险化学品储存过程环境风险应急处理措施

本项目暂存于车间内的化学品根据《常用化学危险品贮存通则(GB 15603-1995)》、《工作场所安全使用化学品规定》(劳部发[1996]423 号)、《腐蚀性商品贮藏养护技术条件》(GB17815-2013)、《毒害性商品贮藏养护技术条件》(GB17916-2013)等规定,在贮存、使用危险化学品中应落实如下措施:

- ▶ 原料入库时,应严格检验物品质量、数量、包装情况、有无泄漏。
- ▶ 贮存仓库须配备有专业知识的技术人员,库房及场所应设专人管理;管理人员须配备可靠的个人安全防护用品。
 - ▶ 应控制库房温度、湿度,严格控制、经常检查,并配备相应灭火器。
 - ▶ 装卸和使用危险化学品时,应根据危险性,配备相应的防护用品。
- ▶ 运输危险物品的车辆应有特殊标志;遇到交通事故,该类物品泄漏时,要严格保护现场,并做好及时回收、清理现场等措施。
- ➤ 在化学危险品储存处应有明显的标志;使用的化学品应有标识,危险化学品应有安全标签,并向操作人员提供安全技术说明书。对于危险化学品,在转移或分装后的容器上应贴安全标签;盛装危险化学品的容器在未净化处理前,不得更换原安全标签。

若危险化学品贮存车间发生泄漏时,应将泄漏或渗漏的危险化学品迅速移至安全区域,车间的泄露液可通过围坎拦截,防止外流;同时泄漏液可通过车间内的围坎导流至厂房外的事故池,以便发生泄漏时收集溢出的物料。

另外,项目原辅料天然气等具有易燃性,若原辅料天然气等发生泄漏,遇到热源或火源容易着火,具有火灾爆炸环境风险。若发生火灾爆炸事故,则会对周边工厂及宿舍楼造成一定影响。发生火灾时燃烧产生的烟气会扩散到宿舍楼,危害员工的健康,但火灾是暂时的,随着应急预案的启动,及时通知附近的工厂,将员工疏散到火灾烟气的上

方向,同时,火灾也能及时地得到控制,火灾过后,环境空气质量将得到恢复,烟气对周边环境的影响也将结束。

建设方应消除作业场所的点火源。作业现场常见的能引起有机物火灾的点火源有明火、焊接火弧、电气火花、吸烟、撞击明火、静电火花、高温设备等,对这些点火源,相关企业应采取相应处理措施,能消除的给予消除,确保生产作业需要不能消除的应采取一定的保护措施,避免点火源与可燃有机物、助燃气体相互作用形成爆炸。

7.5.3 危险废物贮存泄漏事故风险防范措施

本项目运营过程中产生的危险废物有酸碱废液、电镀废液等。危险废物临时贮存设施按照《危险废物贮存污染控制标准》(GB18597-2001)的要求进行建设与维护,贮存设施必须符合以下要求:

- ▶ 必须使用符合标准的容器盛装危险废物。
- ▶ 地面与裙脚要用坚固、防渗的材料建造,建筑材料必须与危险废物相容。
- ▶ 必须按《环境保护图形标志(固体废物贮存场)》的规定设置警示标志。
- ▶ 粗放装载液体、半固体危险废物容器的地方,必须有耐腐蚀的硬化地面,且地面无裂隙。
 - 必须有泄露液体收集装置、气体导出口和气体净化装置。
- ▶ 必须定期对所贮存的危险废物包装容器及贮存设施进行检查,发现破损,应及时采取措施清理更换。
- ▶ 危险废物贮存设施内清理出来的泄露物,一律按危险废物处理,均需交由有资 质单位集中处理。

若危险废物贮存车间发生危险废物(电镀废液、酸碱废液)泄漏时,应将泄漏或渗漏的危险废物迅速移至安全区域,车间的泄露液可通过围坎拦截,防止外流;同时泄漏液可通过车间内的围坎导流至厂房外的企业缓冲池;并在车间内配置适当的空容器、工具,以便发生泄漏时收集溢出的物料。

7.5.4 地表水环境风险防范措施

7.5.4.1 废水收集与运输管网事故风险防范

企业应建设必要水环境风险事故防范设施,防止事故废水、泄漏化学品、或混有化 420 学品的消防水未经处理直接排入洪奇沥水道等水体。水环境风险事故防范设施包括:

1、消防水收集系统建设

参考《水体污染防控紧急措施设计导则》中对事故应急池大小的规定:

V总= (V1+V2-V3) max+V4+V5

注:(V1+V2-V3)max是指对收集系统范围内不同罐组或装置分别计算V1+ V2-V3,取其中最大值。

V1——收集系统范围内发生事故的一个罐组或一套装置的物料量。

注:罐组按一个最大储罐计,装置物料量按存留最大物料量的一台反应器或中间储罐计:

- V2——发生事故的储罐或装置的消防水量, m³;
- V3——发生事故时可以转输到其他储存或处理设施的物料量, m3;
- V4——发生事故时仍必须进入该收集系统的生产废水量, m³;
- V5——发生事故时可能进入该收集系统的降雨量, m^3 。

系数	取值	取值原由				
V1	1.08	项目生产线槽体废水排入对应的污水收集池,项目生产线中最大的槽子为金回收槽,槽体积为1.08m³				
V2	216	V2=30L/S×3600×2h/1000=216m³, 室外消防用水按30L/s计, 火灾延续时间为2h				
V3	0	按最坏情况考虑				
V4	273.16	项目排放生产废水273.16t/d				
V5	1.6	V5=事故时间×降雨强度,根据中山地区的年平均降水量1899.5mm,年平均降水天 数130天,厂内用地面积为2550m²,其中厂房用地面积1610m²,事故时间约2小时, 则V5=1899.5/130/24×2×2550/1000=1.6m³				
V总	491.84					

表 7.5-2 事故废水容积核算

即项目需要设置 491.84m³ 的事故应急池。目前企业生产车间内未设事故应急池,不能满足厂区事故废水收集的要求。

高平污水处理有限公司设置了一个地下式、容积为2320m³的事故池。项目位于高平工业区,当厂区内发生突发环境事故,本身事故应急系统不能满足应急需求时,再通过管道介入高平污水处理有限公司的事故池,其容积为2320m³,可用于收集电镀园区内各企业发生事故及火灾时的事故废水或消防废水,完全可满足本项目的应急需要。

- 2、设置排水切断设施:在厂区污水管网、雨水管网汇入口处设置安装切断设施。
- 3、在生产车间设围堰。

- 4、重视管网及泵站的维护及管理,防止泥沙沉积堵塞而影响管道的过水能力。
- 5、管道衔接应防止泄漏污染地下水和掏空地基,防止泥沙沉积堵塞,淤塞应及时 疏浚,保证管道通畅。

7.5.4.2 与电镀基地风险防控联动方案

项目发生泄漏、火灾等环境风险有可能导致周边企业的连锁反应,从而产生连带风险,项目污水排放若超过高平污水处理有限公司设计负荷,会影响污水处理效率从而影响纳污水体水质,为了最大限度减轻项目运营对周边企业及环境风险影响,建设单位应做好以下工作:

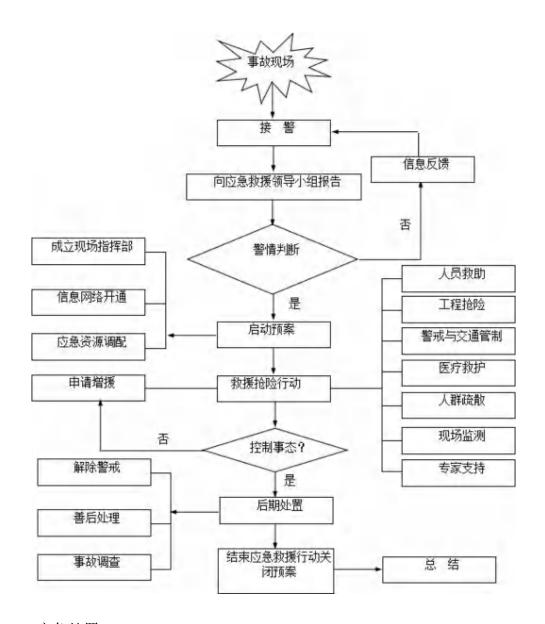
- (1)加快自身日常管理制度的建设和应急预案的制订,同时将其送往电镀基地、 高平化工区和管理部门进行备案。
- (2) 电镀基地制定应急预案后,建设单位应服从基地应急预案要求,做好企业与基地的应急协调联动。
- (3)建设单位应在厂区醒目位置设置应急电话警示牌,标示出消防部门电话及基地、高平化工区、三角镇、中山市等管理部门联系电话,在发生风险事故时在第一时间将事故情况通知相应管理部门,使风险事故得到及时有效控制及解决。
- (4)建设单位应与周边企业企业保持友好协助关系,在发生风险事故时能及时通知周边企业并得到其及时、有效的帮助。
- (5)项目需申报排水量,并在实际生产时不得高于申报量。若建设单位的生产出现异常情况,如排水量突然增加及污染物浓度增加时应立即停止生产并同时通知电镀基地管理部门,启动电镀基地非正常工况应急处理措施,保证不因本项目的运营而影响污水处理站的正常运行。
- (6) 若基地污水站出现事故无法正常运营时,本项目应马上采取停产等措施,待 污水处理系统正常后再进行生产。

7.5.5 地下水环境风险防范

按照厂区设备和生产特点以及可能产生的风险强度和污染物入渗影响地下水的情况,根据不同区域和等级的防渗要求,将厂址区的防渗划分为一般防渗区和重点防渗区。

重点防渗区:对于本项目,重点防渗区主要包括生产车间、事故应急池、污水收集

池、危废仓、原材料仓库等。应对地表进行严格的防渗处理,场地底部采用高密度聚乙烯做防渗材料,渗透系数小于 10⁻¹³cm/s,以避免渗漏液污染地下水。


一般防渗区:厂区内除重点防渗区以外的地面,如一般固废仓等。通过在抗渗钢纤维混凝土面层中掺入水泥基渗透结晶型防水剂,其下铺砌砂石基层,原土夯实达到防渗的目的。

7.5.6 大气环境风险防范

- (1) 定期对废气处理设施进行检测和维修,以降低因设备故障造成的事故排放。
- (2) 生产车间设置可燃气体检测装置,可快速发现易燃材料泄漏事故。

7.5.7 应急预案

按照《国家突发公共事件总体应急预案》的要求,建设单位必须根据有关法律法规制定的应急预案。

一、应急处置

1、信息报告

风险事故发生后,建设单位相关部门要立即通报有关单位和部门。应急处置过程中, 要及时续报有关情况。

2、先期处置

风险事故发生后,建设单位相关部门在通报事故信息的同时,要根据职责和规定的 权限启动相关应急预案,及时、有效地进行处置,控制事态。

3、应急响应

对于先期处置未能有效控制事态的特别重大事故,要及时启动相关预案,由相关主管部门或上级工作组统一指挥或指导有关部门开展处置工作。

现场应急指挥机构负责现场的应急处置工作。

需要多个相关部门共同参与处置的事故,由该类事故的业务主管部门牵头,其他部 门予以协助。

4、应急结束后的信息发布

重大事故应急处置工作结束,或者相关危险因素消除后,现场应急指挥机构予以撤销。并做出相关的信息发布。

突发公共事件的信息发布应当及时、准确、客观、全面。事件发生的第一时间要向 社会发布简要信息,随后发布初步核实情况、政府应对措施和公众防范措施等,并根据 事件处置情况做好后续发布工作。

信息发布形式主要包括授权发布、散发新闻稿、组织报道、接受记者采访、举行新闻发布会等。

二、应急保障

建设单位要按照职责分工和相关预案做好风险事故事件的应对工作,同时根据总体 预案切实做好应对突发公共事件的人力、物力、财力、交通运输、医疗卫生及通信保障 等工作,保证应急救援工作的需要和受灾群众的基本生活。

1、人力资源

建设单位要加强应急救援队伍的业务培训和应急演练,建立联动协调机制,提高装备水平,充分发挥其在应对突发公共事件中的重要作用。

2、财力保障

要保证所需突发公共事件应急准备和救援工作资金。对受突发公共事件影响较大的企事业单位和个人要及时研究提出相应的补偿或救助政策。要对突发公共事件财政应急保障资金的使用和效果进行监管和评估。

3、物资保障

要建立健全应急物资监测网络、预警体系和应急物资生产、储备、调拨及紧急配送体系,完善应急工作程序,确保应急所需物资和生活用品的及时供应,并加强对物资储备的监督管理,及时予以补充和更新。

4、基本生活保障

积极配合相关政府部门,要做好受灾群众的基本生活保障工作,确保受灾群众有饭

吃、有水喝、有衣穿、有住处、有病能得到及时医治。

5、医疗卫生保障

积极配合卫生部门,根据需要及时赴现场开展医疗救治、疾病预防控制等卫生应急工作。及时为受灾地区提供药品、器械等卫生和医疗设备。

6、交通运输保障

要保证紧急情况下应急交通工具的优先安排、优先调度、优先放行,确保运输安全 畅通;要依法建立紧急情况社会交通运输工具的征用程序,确保抢险救灾物资和人员能 够及时、安全送达。

根据应急处置需要,对现场及相关通道实行交通管制,开设应急救援"绿色通道", 保证应急救援工作的顺利开展。

7、治安维护

要加强对重点地区、重点场所、重点人群、重要物资和设备的安全保护,依法严厉打击违法犯罪活动。必要时,依法采取有效管制措施,控制事态,维护社会秩序。

8、通信保障

建立健全应急通信、应急广播电视保障工作体系,完善公用通信网,建立有线和无线相结合、基础电信网络与机动通信系统相配套的应急通信系统,确保通信畅通。

三、监督管理

1、预案演练及培训

结合实际,有计划、有重点地组织有关部门对相关预案进行演练,例如含铬电镀液泄露、含镍电镀液泄露等预案演练(包括报警反应、人员疏散、事故调查、现场污染物危害控制技术、污染物消除技术以及应急事件的善后处理工作等程序)。要有计划地对应急救援和管理人员进行培训,提高其专业技能。

2、责任与奖惩

突发事故应急处置工作实行责任追究制。

对突发事故应急管理工作中做出突出贡献的先进集体和个人要给予表彰和奖励。

对迟报、谎报、瞒报和漏报突发事故重要情况或者应急管理工作中有其他失职、渎职行为的,依法对有关责任人给予处分;构成犯罪的,依法追究刑事责任。

四、应急预案

应急预案是针对各种可能事故,制定周密具体的行动方案,方案主要包括两方面内容:一是处理事故的行动方案,如废水泄漏、电镀液泄露的处理等;二是及时施行救治的行动方案。编制事故应急处理预案的目的是抑制突发事件、减少事故对员工、居民和环境的危害。发生事故后控制危险源、避免事故扩大,可能的情况下予以消除,尽可能减少事故造成的人员和财产损失。

含镍物的应急措施:可引起镍皮炎,又称镍"痒疹"。皮肤剧痒,后出现丘疹、疱疹及红斑,重者化脓、溃烂。

A、泄露处理

隔离泄露污染区,限制出入。切断火源。应急处理人员戴自吸过滤式防尘口罩,穿防毒服。不要直接接触泄露物。使用无火化工具收集于洁净、有盖的容器中,转移处理。处理方法:水体受到污染时,加入石灰中和,使镍以氢氧化镍形式沉淀而从水中转入污泥中,污泥再做进一步处理。对于受镍污染的土壤,可加石灰调节 pH 至碱性,减少土壤镍对作物的毒性。

B、防护措施

可能接触其粉尘时,应佩戴自吸过滤式防尘口罩;戴化学安全防护眼镜;穿透气型防毒衣;戴防化学品手套。工作完毕后,淋浴更衣。注意个人清洁卫生。工作时皮肤划伤出应及时处理。

C、急救措施

皮肤接触:脱去被污染的衣物,用肥皂水和清洗水彻底冲洗皮肤。眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗 15min。吸入:迅速脱离现场至空气新鲜处,保持呼吸道通畅,如呼吸困难,给输氧;如呼吸停止,立即进行人工呼吸。食入:饮足量温水,催吐,就医。

D、灭火措施

消防人员必须佩戴过滤式防毒面具或隔离式呼吸器,穿全身防火防毒服,在上风处灭火。灭火剂:干粉、沙土。

综上,建设单位应分别制定危险化学品泄漏(包括电镀液、酸、含氰物质等)、气体中毒、危险品贮运事故等事故的应急预案,明确事故发生时的应急措施,如报警信号、抢险、救护等操作程序,并且定期检验和评估现场事故应急处理预案和程序的有效程度以在必要时进行修订,定期举行针对各种事故的对策演习,提高防灾意识,增强实战经427

验,检验防灾队伍和设备的能力和完备程度。

表 7.5-3 突发事故应急方案

项目	内容及要求
1.总则	阐明预警方案的必要性及其编制依据
2.危险源概况	详细描述危险源类型、数量及其分布
3.紧急计划区	①贮罐②厂区③邻区④附近居民区
4.紧急组织	工厂:厂指挥部一负责现场全面指挥
5.应急状态分类及应急响	规定事故的级别及相应的应急分类,响应程序
6.应急设施、设备与材料	储罐:①防火灾,爆炸事故应急设施,设备与材料,主要为消防器材。
7.应急通讯、通知和交通	规定应急状态下的通讯方式,通知方式和交通保障、管制
8.应急环境监测及事故后	由专业队伍负责对事故现场进行侦察监测,对事故性质,参数与后果
9.应急防护措施清除泄漏	事故现场:控制事故、防止扩大,蔓延及链锁反应,消除现场泄漏,
10.应急剂量控制、撤离组	事故现场:事故处理人员对毒物的应急剂量控制制定、现场及邻近装
11.应急状态终止与恢复	规定应急状态终止程序
12.人员培训与演练	应急计划制定后,平时安排人员培训与演习
13.公众教育和信息	对工厂邻近地区开展公众教育,培训和发布有关信息
14.记录和报告	设置应急事故专门记录,建档案和专门报告制度,设专门部门和负责
15.附件	与应急事故有关的各种附件材料的准备和形成

建设单位应制定详细的环境风险应急预案,确保在紧急与事故发生时能有效迅速妥善处理,以防止或降低对环境的污染及人员设备的损失。

7.5.8 项目应急措施

(一) 化学品泄漏、电镀槽缸破裂泄漏应急措施

当发生化学品泄漏时,由于化学品中氰化物是剧毒品,强酸强碱是腐蚀品,因此应急处理人员应戴自给正压式呼吸器防止中毒,穿防酸碱工作服,不要直接接触泄漏物,尽快切断泄漏源,将地面泄漏物立即清除,用水冲洗多次,并用湿布擦净,防止泄漏物流入管道、排洪沟等防制性空间。小量泄漏时可用砂土、干燥石灰或苏打灰混合;泄漏量大时泄漏物于围堰内暂存,并尽快用防爆泵转移至槽车或专用收集器内,回收或交有资质单位处置。电镀槽缸破裂泄漏时需尽快切断泄漏源,泄漏物经车间内的管道排入事故池,尽快交有资质单位处置。

(二) 废气等污染治理的事故性排放应急措施

1、工作程序

A、应急处理领导小组在接到污染事故发生的警报后,应立即通知市环境监察应急 小组和市环境监测应急小组赶赴现场,当出现重、特大突发性环境污染事件时,领导小 组应有一名以上成员到现场指挥应急救援工作向市环境污染事故应急救援领导小组汇报:

- (1) 事故发生的时间、地点、性质、原因以及已造成的污染范围;
- (2) 污染源种类、数量、性质;
- (3) 事故危害程度、发展趋势、可控性及预采取的措施;
- (4) 报告事故发生的时间地点、污染源、经济损失、人员受害情况等;
- (5) 其它需要清楚的情况。
- (6)一般情况下,水污染在4小时内,气污染在2小时内定性检测出污染物的种类及其可能的危害;
- (7)一般情况下,24小时内定量检测出污染物的浓度、污染的程度和范围,并发出监测报告。

B、现场污染控制

- (1) 立即采取有效措施,与相关部门配合,切断污染源,隔离污染区,防止污染扩散;
 - (2) 及时通报或疏散可能受到污染危害的单位和居民;
 - (3)参与对受危害人员的救治。
- 2、医疗保障。应急过程中如出现人员中毒或受伤,可就近送至医院救治或及时与 医疗单位联系,组织现场救治,也可送至现场指挥所指定的医院、医疗单位救治。应急 终止后根据实际情况组织转院或继续治疗。

3、措施

当废气处理系统发生事故排放时,立即组织人员查明事故发生原因并进行维修,若 不能及时得以恢复的事故现象,应立即停产,直至相关设备恢复正常运行。

(三) 火灾、爆炸事故的应急措施

- 1、处置火灾的原则
- 有指挥,有组织领导,成立相应的领导小组。
- 有保障,做到谨慎从事,全体动员,及时向有关部门请求帮助和增援。
- 有措施,采取必要的措施,稳定案情,保护人身安全和减少财产损失。
- 有策略,根据案情的发展听取意见,制定相应的措施,力争迅速控制或解决案 情。

2、指挥机构

处置事件领导小组:事件发生的第一时间,发现情况应立即以最快的速度向领导报告,并尽可能做好应急处理。本厂在接到情况后立即成立领导小组,一般由厂长担任指挥。厂长不能及时赶到现场时,副厂长担任临时指挥。特殊情况下其它部门负责同志可以临时担任指挥。

成立以下执行小组:灭火行动组、通讯联络组、疏散引导组、防护救护组。

3、报警

当发生事故时,事故发现者应立即拨打 119 报警并拉响警报,同时按照公司火灾事故等级分类报告程序将情况及时、准确的逐级报告给上级领导。

4、事故现场处理

根据火灾事故等级,设立相应现场指挥、现场支持人员、现场抢险力量、抢险方案及各级事故上报人。

5、火灾事故抢险方案

当场发生火灾事故时,应迅速作出事故类别和等级判断,报警和现场处理的同时,对于火灾现场要进行积极抢险扑救。同时,厂内立即停止一切作业,切断电源、气源、热源及一切可能引起火灾范围扩大的因素。迅速组织临时灭火指挥部,向邻近单位发出支援、防范通知。火灾扑灭后,加强现场监护,防止复燃。

- 6、周边单位发生火灾事故抢险方案
- A、当周边单位发生火灾时,应及早了解火灾险性,对火灾过程及时监察。
- B、及时向公司、消防中队及有关单位报告险情。
- C、如果火灾单位发出增援信息,应根据联防协议,积极进行配合火灾单位进行灭火。
 - 7、事故应急救援关闭程序与恢复措施
- A、关闭厂区雨水排放口和污水排放口,消防废水排入项目的事故应急池,引至园 区污水站处理或交有资质单位外运处理;
 - B、实施事后应急监测,主要是监测项目污水出水口的指标和酸雾排放口的指标;
 - C、事故后总结、通告。
 - (四)事故废水及消防废水处理

本项目生产废水依托高平污水处理有限公司处理, 当园区污水处理站故障或项目废

水池到园区污水站的废水输送管道破裂时,应立即关闭厂区废水池与园区废水管网联接的阀门,排查原因进行紧急检修,必要时车间应停产,待园区污水处理站恢复正常运行或管道修复完毕后,再将废水排入基地污水处理站处理。发生火灾事故时应在雨水总排放口设置截断阀措施避免有毒有害物质通过雨水沟流出造成泄漏污染水体的事故,将消防废水排至事故应急池暂存,事故结束后再将消防废水排入园区污水处理站或委托有资质单位外运处理。

7.5.8.1 高平电镀污水处理有限公司的应急措施

污水处理厂可能因设备不能正常运行(供电保障或设备故障),人为操作失误,进水水质波动等原因造成出水不达标,污水处理厂内必须设置事故应急池,作为事故排放应急用;并设置提升系统,同时设置车间排水管道切换系统、废水提升管道切换系统及出水管道切换系统,以保障废水站的正常稳定运行,避免事故的发生。

废水站可能导致事故出现的原因有:生产线排放出现事故排放;因突发因素或人为 因素导致出水不达标时;废水站某类废水的处理系统发生故障;工业区内企业偷排生产 废水;其他原因导致的出水不达标。当出现上述原因导致的事故时,需有正确的紧急应 对措施,保证废水站出水水质稳定,杜绝污染物超标外排。

应对事故排放的主要途径设置事故池收集事故废水,再泵入相应的废水处理系统处理,但由于高平污水处理有限公司用地十分紧张,为保证废水处理站的正常处理能力,所设事故池不能过大,因此高平污水处理有限公司在停车厂及绿地的地下设置有效容积为2320m³的事故池,一方面可紧急应对事故发生,另一方面不占用污水厂用地面积,保证正常废水处理设施的用地。

在建有应急事故池的前提下,目前污水处理厂的第四期技改还考虑用以下方法补充 应对紧急事故:

在排放水池加回流泵,发现外排废水不达标时,及时开启回流泵将不达标废水回流 到调节池中,污水厂调节池停留时间均在 6-8h,可以满足应急处理要求。

根据园区情况,加装智能水表监控各企业,发现事故排水则直接停止该企业的排水。 在用地紧张的情况下,采用上述紧急事故处理方法可有效处理紧急事故,保证无超 标物外排。

7.5.9 环境风险评价小结

项目风险类型主要为危险化学品、危险废物储存袋/桶损坏导致物质泄漏、扩散事故; 生产废水输送系统损坏导致污染物事故排放; 厂区火灾造成的次生污染; 废气处理设施故障、失效,导致废气未经有效治理直接排放。建设单位需加强职工的安全生产教育,提高风险意识; 建立一套完整的管理规程、作业规章和应急计划,并在各关键环节配备在线监控、预警和应急装置,在出现预警情况时能及时处理,消除事故隐患,发生事故时有相应的风险应急措施; 根据项目的实际情况编制突发事故应急预案,并认真落实环境风险防范措施,则发生有毒有害物质泄漏、废水及火灾事故排放、废气事故排放的机率将大为降低,当发生上述事故时采用相应的应急措施,可以把事故的危害程度控制在可接受的范围。

表 7.5-4 环境风险评价自查表

	工作内容					完成情	 				
	名 IA Hm 氏	名称					7 A U E M =	₽			
风 险 调	危险物质	存在总量/t	详见原料表								
		大气 -	500m 范	围内人口数	效 <u>600</u> 人		5K	m 范围内人	口数 1万-5万	5人	
					每公里管段	周边 200r	n 范围内人口	数		人	
	环境敏感性	ᆙᆂᆉ	地表	長水功能敏	感性		F1=	I	F2□	F3√	
查	小児墩恐性	地表水	环境	竟敏感目标	分级		S1□	5	82□	S3√	
		サイン	地干	下水功能敏	感性		G1□	(52□	G3√	
		地下水	包	气带防污性	生能	-	D1□	D	2□√	D3□	
		Q值		Q<1 _□		1≤0	Q<10□	10≤Q	<u>2</u> <100√	Q>100 _□	
物质及	工艺系统危险性	M 值		M1□]	M2□	N	∕ 13□	M4√	
		P值		P1□			P2□	I	23□	P4√	
		大气		E1□			E2√			Е3□	
环	境敏感程度	地表水	E1 _□				E2□		E3√		
		地下水	E1 _□				E2□			ЕЗ√	
环境风险潜势		$\mathrm{IV}^+\square$	IV□			I	II□	ΙΙ	J	I√	
-	评价等级	一级口	二级口			三级√			简单分析√		
风险识	物质危险性		有毒有害√		易燃易爆√						
別	环境风险类型		泄露√			火灾、爆炸引发伴生/次生污染物排放√				物排放√	
נינל	影响途径	大气	大气√			地表水√ 地下水√			也下水√		
事	故情形分析	源强设计方法	法口计		计算法□	经验估算法		估算法□	算法□ 其他估算法□		
		预测模型□	SLA		SLAB	AFTOX□			其他□		
京 [公話	大气	 预测结果				大气毒性终点浓度-1 最大影响范围 m					
风险预 测与评		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				大气	毒性终点浓度	E-2 最大影响	向范围 m		
价	地表水				最近环境	竟敏感目标	示,到达时间]	h			
וע	地下水				下游	厂区边界	到达时间 h				
	161.77				最近环境	竟敏感目标	示,到达时间]	h			
		1、地表水风险防范措	昔施:与电银	镀基地污水	处理厂进行	事故应急联	关动;				
重点风险防范措施		2、地下水、土壤风险									
		3、大气环境风险防范	*****	,, ,,,,,							
	P结论与建议	在采取本报告提出的理	环境风险防	ī范措施与J	应急预案的基	础上,项	目的环境风险	水平在可接	受的范围内		
注:"□"	为勾选项,为填写	项									

8 环境影响经济损益分析

环境影响经济损益分析包括对建设项目环保投资估算、环境损失和环境收益,以及建设项目的经济效益和社会效益。本评价报告以资料调查为主,了解建设项目所排放的污染物所引起的环境损失,以及建设项目采取各项环境保护措施后所得到的环境收益,估算整个建设项目建成前后的环境经济损益。

以调查和资料分析为主,在详细了解项目的工程概况、环保投资及施工运行等各个环节影响的程度和范围的基础上,进行经济损益分析评价。

8.1项目投资成本

项目技改扩建后总投资 2500 万元, 其中环保投资 500 万元, 约占总投资的 20%, 环保设施及其投资估算详见下表:

序号	项目	投资额 (万元)
1	废气处理设备	1500
2	废水收集系统	100
3	一般固废、危废堆放场	50
4	隔音、降噪、防震等噪声治理	90
5	风险防范措施	80
6	不可预见资金及其他	30
	合计	500

表 8.1-1 环保设施投资分项表

8.2环境影响损失

8.2.1 大气环境影响损失

废气包括电镀生产线产生废气、电泳、喷漆、水转印有机废气和天然气锅炉燃天然气废气,项目车间 2 楼酸雾废气(氯化氢、硫酸雾)收集后经碱液喷淋塔处理后通过 50m排气筒 G1 排放,车间 2 楼碱性废气(氨气)收集后经水喷淋塔处理后通过 50 排气筒 G2 排放,车间 2 楼及车间 4 楼含氰废气(氰化氢)收集后经碱性次氯酸钠溶液喷淋塔

处理后通过 50 排气筒 G3 排放, 喷漆、电泳、水转印有机废气收集后经水喷淋+活性炭 吸附装置处理, 最后通过 50m 排气筒 G4 排放, 车间 2 楼及车间 6 楼含铬废气(铬酸雾) 收集后经碱液喷淋塔处理后通过 50 排气筒 G5 排放,车间 4 楼及 5 楼酸雾废气(氯化氢、 硫酸雾)收集后经碱液喷淋塔处理后通过 50m 排气筒 G6 排放,5 楼碱性废气(氨气) 收集后经水喷淋塔处理后通过 50 排气筒 G7 排放,车间 5 楼、6 楼及 7 楼含氰废气(氰 化氢) 收集后经碱性次氯酸钠溶液喷淋塔处理后通过 50 排气筒 G8 排放,车间 6 楼及 7 楼酸雾废气(氯化氢、硫酸雾)收集后经碱液喷淋塔处理后通过 50m 排气筒 G9 排放, 车间6楼及7楼碱性废气(氨气)收集后经水喷淋塔处理后通过50排气筒G10排放, 燃天然气锅炉天然气燃烧废气收集后通过 50m 排气筒 G11 排放。项目外排氯化氢、硫 酸雾、氰化氢、铬酸雾执行《电镀污染物排放标准》(GB 21900-2008)表 5 的新建企 业大气污染物排放限值,氨、臭气浓度执行《恶臭污染物排放标准》(GB14554-93)表 2 有组织排放限值,非甲烷总烃、TVOC 执行广东省地方标准《固定污染源挥发性有机 物综合排放标准》(DB44/2367-2022)表 1 挥发性有机物排放限值,颗粒物执行广东省 地方标准《大气污染物排放限值》(DB44/27-2001)(第二时段)二级标准限值,天 然气燃烧废气外排二氧化硫、氮氧化物、颗粒物执行广东省地方标准《锅炉大气污染物 排放标准》(DB44/765-2019)表2新建锅炉大气污染物排放浓度限值。

电镀生产线氯化氢、硫酸雾、氰化氢、铬酸雾、氨以及喷漆、电泳、水转印工序非甲烷总烃、颗粒物、臭气浓度少量为未收集部分为无组织排放,氯化氢、硫酸雾、氰化氢、铬酸雾、非甲烷总烃、颗粒物厂界浓度参照执行广东省《大气污染物排放限值》(DB44/27-2001)第二时段无组织排放监控浓度限值的要求;氨、臭气浓度执行《恶臭污染物排放标准》(GB14554-93)恶臭污染物厂界二级标准值(新扩改建)。

本项目各废气经有效处理后,对周围环境影响不大。经影响分析,外排废气在达标排放的情况下,对周围大气环境的影响较小。但应该注意的是,在超标排放或出现事故、不利气象条件时,对周围环境空气质量的影响将大大增加,将引起比较大的大气环境损失。

8.2.2 水环境影响损失

项目实施后,生活污水排放 1.8t/d,生产废水排放 237.28t/d。生活污水经三级化粪

池预处理后排入三角镇生活污水处理厂处理,尾水达广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段一级排放标准与《城镇污水处理厂污染物排放标准》(GB18918-2002)的一级 A 标准较严者后排入洪奇沥水道,对洪奇沥水道水质影响不大。生产废水中含有 COD_{Cr}、铜、镍、氰化物等多种污染物,经高平污水处理有限公司处理,尾水达广东省地方标准广东省《电镀水污染物排放标准》(DB44/1597-2015)表1 中珠三角排放限值后排入洪奇沥水道,对洪奇沥水道水质影响不大。

8.2.3 声环境影响损失

项目营运期噪声源主要为过电镀槽电机、风机、泵、抽风机、熔锡炉、空压机等设备,其噪声值范围在65~80dB(A)。建设单位通过合理布局、对高噪设备采取隔声、减振、降噪措施,合理安排运输离线、合理安排工作时间等措施,可使项目厂界达到《工业企业厂界环境噪声排放标准》2类标准,对周边环境影响不大。

8.2.4 固体废物影响损失

本项目运营期产生的固体废物主要包括:不合格产品、一般原材料废包装、危险化学品废包装、废滤芯、废槽渣、废液、废 RO 反渗透膜、废离子交换树脂和生活垃圾等。危险化学品废包装、废滤芯、废槽渣、废液、废离子交换树脂等危险废物定期交由具有相关危险废物经营许可证的单位处置;废 RO 反渗透膜由设备保养公司更换并回收;不合格产品、一般原材料废包装交废旧物资回收公司处理;生活垃圾交环卫部门处理。

8.2.5 社会经济效益分析

项目位于三角镇,符合三角镇建设的发展规划。项目的投产对发展国内五金制件生产,提高国内生产技术水平和质量,减少进口,扩大出口及创汇,带动国内相关同类企业参与国际市场竞争具有积极的促进作用。项目投产以后,国家和地方政府每年可获得大量的增值税、企业所得税和其它税款,并能缓解当地就业压力,带动相关企业的发展,对促进三角镇的经济发展和繁荣将起到积极地推动作用,具有良好的社会经济效益。

(1) 直接经济效益分析

本项目投产后有利于金美达公司的进一步发展,将为企业新增产值,将带来较大的 经济收益,地方财政收入也将有所提高,随着市场推广成熟直接经济效益将更大。

(2) 间接经济效益分析

本项目的社会效益主要包括以下方面:

①吸纳当地劳动力,解决就业问题

本项目提供 200 个工作岗位,提供的就业机会可安置当地部分无业人员,有利于减轻社会负担和就业压力,有利于和谐社会的发展。

②繁荣当地经济,带动相关产业发展

本项目原辅材料、机械设备的购买及水、电、天然气的消耗,将刺激相关产业的生产,扩大市场需求,带动区域甚至区域以外更大范围的经济发展。

- ③提高区域综合竞争力
- 三角镇高平工业区电镀基地对五金电镀企业集中布局,有利于形成集聚效应,同时由于园区实行工业废水的集中处理,由于规模效应废水处理成本将会下降,对企业而言意味着废水处理成本的降低与经济效益的增长。金美达公司的生产不仅可满足市场需求,而且可以带动当地相关产业的发展。

综上所述, 本项目具有良好的社会经济效益。

8.2.6 环境经济效益分析

环境收益是指环保投资后环境的直接效益和间接效益,直接效益主要表现为污染物综合利用和节约资源产生的效益,间接效益主要是减少污染排放对环境产生的长期累计效益。控制污染后可达标排放,可以少缴纳排污费,环保措施实施后,可以实现对水环境的保护、人群健康的保护及生态环境的改善和减少事故性赔偿损失。

8.3小结

项目的运营会对环境产生一定的影响,但在运营过程中,只要严格按照所提环境保护措施对项目产生的污染物进行处理,确保废水、废气、噪声达标排放,并建立完善的管理制度,防止出现突发事故,严格执行有关的法律、法规,环保措施执行"三同时"制度,可保证本项目所造成的环境经济损失较少。本项目环境和资源的损失小于项目的社会和经济效益,从环境经济损益角度分析,项目的建设是可行的。

9 环境管理与监测计划

9.1环境管理

9.1.1 环境监测的任务

总的来说,环境管理的基本任务有二:一是控制污染物的排放量;二是避免污染物排放对环境质量的损害。

为了控制污染物的排放,就需要加强计划、生产、技术、质量、设备、劳动、财务等方面的管理,把环境管理渗透到整个企业管理中,将环境目标与生产目标融合在一起,以减少生产过程中各环节排出的污染物。

企业应该将环境管理作为企业管理的重要组成部分,建立环境质量管理系统、制定 环境规划、协调发展生产与保护环境的关系,使生产目标与环境目标统一起来,经济效 益与环境效益统一起来。

9.1.2 环境保护管理机构及职责

为了做好环境"全过程"保护工作,减轻本项目外排污染物对环境的影响程度,建设单位要高度重视环境保护管理工作,应结合全厂实际设立环境保护管理机构,配备必要的环境保护管理人员,专人负责环境保护工作,实行定岗定员,岗位责任制,负责各生产环节的环境保护管理,保证环保设施的正常运行。

(1) 环保机构设置

为保证环境管理任务的顺利实施,应设置控制污染、保护环境的专门责任人。设立专门的环保部门和专职环保人员,负责全厂的环境保护管理工作,并要求有一名厂级领导分管环保工作。

(2) 环保机构职责

- ①执行国家、省、市环保主管部门制定的有关环保法规、政策、条例,协调项目生 产和环境保护的关系,并结合项目具体情况,制定全厂环境管理条例和章程。
 - ②负责全厂的环保计划和规划,负责开展日常环境监测委托工作,完成上级主管部

门规定的监测任务,统计整理有关环境监测资料并上报地方环保部门;"三废"排放状况的监督检查及不定期总结上报等工作。

- ③配合上级环保主管部门检查、监督工程配套建设的污水、废气、噪声、固废等治理措施的正常运行情况;检查、监督环保设备等的运行、维修和管理情况,监督本厂各排放口污染物的排放状态。
- ④负责提出和审查有关环境保护的技术改造方案和治理方案,组织和参加污染源的治理:配合搞好固体废物的综合利用、清洁生产以及污染物排放总量控制。
- ⑤负责管理该项目的环境监测工作,对环境监测仪器、设备的维护保养,确保监测工作正常运行。
 - ⑥负责环境管理及监测的档案管理和统计上报等工作。
 - ⑦负责本项目厂内环境污染事件的调查、处理、协调工作。
 - ⑧组织职工的环保教育,搞好环境宣;参与本项目的环境科研工作。
 - (3) 环保机构人员职责

具体环境管理机构人员设置及职责见下表。

机构设置 人员组成 主要职责及工作内容 ①协助总经理制定公司环保方针和监督措施; 主管环保 厂级领导1人 副总经理 ②负责指导环保科的各项具体工作。 ①部门主管副总管理全厂各项环境保护工作; ②编制全厂环保工作计划、规划; ③组织开展单位的环境保护专业技术培训; ④组织环保知识宣传教育活动,提高全体职工的环保意识; 环境保护 部门主管1人 ⑤组织制定本项目的环境管理规章制度并监督执行; 管理部门 ⑥掌握本项目各污染治理措施工艺,建立污染源管理档案; ⑦协同有关部门解决本单位出现的污染事故; ⑧事故状态下环境污染分析、决策,必要时聘请设计单位或有关专家 协同解决。

表 9.1-1 建设项目环境管理机构人员设置及职责

9.1.3 环境管理要求

- (1) 依照我国环境保护法规,在本项目竣工试生产后,向相关环境保护部门申请 对项目配套建设的环保治理设施予以竣工验收。
 - (2) 参照 ISO14001 的环境管理模式,组织编制环境管理文件和实施细则,将结果

统一审核和汇编成册,经批准后成为本项目管理的有效指导文件和依据。

- (3)制定各环保设施操作规程、定期维修制度,使各项环保设施在生产过程中处于良好的运营状态。
- (4)对技术工人进行上岗前的环保知识、法规教育及操作规范的培训。使各项环保设施的操作规范化,保证环保设施的正常运转。
- (5) 规范化设置排放口和相关设施(计量、标志牌等),并规范化采样口的设置, 本项目原则上在总放排口进行监测。
- (6)加强对环保设施的运营管理,如环保设施出现故障,应立即停产检修,待处理系统恢复再恢复生产,严禁非正常排放。
- (7)委托监测机构对本项目污染物排放进行日常定期监测,污染物排放监测记录 以及其他相关记录应至少保存3年以上,并接受环保部门的检查。
- (8)建立污染防治设施运行记录制度,对污染物处理效果定期检测,按月向环境保护部门的环境监理机构报告运行情况。并按环保技术部门要求记录污染物排放量、设施运转情况、污染物监测数据。
- (9)加强对化学品的进出和储存管理,做好相关记录,务必按照有关的规范进行登记和管理。

9.1.4 环境管理目标

- (1)项目在运营期,全面推行清洁生产技术,对全体员工进行清洁生产培训,在 企业内部全面施行清洁生产,所有的生产行为都必须符合清洁生产的要求。
- (2) 严格控制污染源和污染物的排放,对项目的污染物进行全面处理和全面达标控制。
- (3)坚持生态保护与污染防治相结合,生态建设与生态保护并举,大力推进区域生态建设的步伐。
 - (4) 加强环境管理能力建设,提高企业环境管理水平。

9.1.5 建立环境管理体系

项目建成后,在环境管理方面应加强科学化、现代化和系列化的原则,争取尽快建立和推行 ISO-14000 环境管理体系。

1、建立环境管理体系的理由

具体来说,环境管理体系为企业提供了如下支持:

- (1) 解决环境问题的系统方法;
- (2) 评价、控制重大环境因素的方法;
- (3) 能够明确实施与责任的方法:
- (4) 确保生产与法律、法规符合的方法;
- (5) 降低废物排放与能源消耗并提高国际竞争力的方式;
- (6) 制环境风险、提高环境绩效的方法;
- (7) 满足利益方环境期望的方法;
- (8) 树立企业形象、提高国际竞争力的方法;
- (9) 对持续改进与污染预防的承诺。
- 2、环境管理体系的建立步骤和纲要
- (1) 建立步骤

环境管理体系的建立步骤主要包括环境管理体系策划,环境管理体系建立,环境管理体系实施,环境管理体系保持与改进。

(2) 环境管理体系纲要

主要包括了企业环境方针;企业简介与组织机构概述;与环境管理体系相关的重要人员的职责与权限;环境管理体系描述,包括对程序与作业指导书的综述;文件控制。

- 3、环境管理体系程序
- 一般,环境管理体系程序应包括如下方面:
- (1) 环境因素识别与评价程序;
- (2) 环境法律法规管理程序;
- (3) 环境指标与方案管理程序;
- (4) 环境管理体系培训管理程序:
- (5) 环境信息交流程序;
- (6) 文件与记录控制管理程序;
- (7) 能源管理程序;

- (8) 研究开发管理程序;
- (9) 大气污染物控制管理程序;
- (10) 水污染物控制管理程序;
- (11) 环境噪声管理程序;
- (12) 废物管理程序:
- (13) 化学品安全管理程序;
- (14) 环保设施管理程序:
- (15) 监控与测量程序:
- (16) 违章、纠正与预防措施程序;
- (17) 环境记录管理程序;
- (18) 环境管理内部审核程序。

项目建成后,最好尽快通过建立环境管理体系,更进一步地合理利用企业生产环境,合理利用资源、能源和原材料,开展综合利用,减少污染物排放量,在发展生产的同时,为社会、企业和员工创造更好的环境效益,经济效益和社会效益。

9.1.6 环境管理机构与职责

建设单位应配备专职或兼职的环境保护管理机构和环境保护管理人员,负责整个企业的环境保护工作,主要职责包括:

- 1、编制本厂环境保护规划和计划,组织制定和修改环境保护管理制度,并监督执行,包括环保设施的运行操作规程和管理制度、定期环境监测制度、环境绩效考核制度、环境保护奖罚细则等:
- 2、管理和监督各车间的污染状况,检查企业环境保护设施的运行,以保证全厂的 污染物排放符合国家和当地政府的环境保护标准要求;
- 3、负责向上级环保部门上报污染监测及环境指标考核报表,及时将上级环保部门和厂领导的要求传达到厂生产管理部门并监督执行。
 - 4、推广应用环境保护先进技术和经验;
 - 5、组织开展企业环境保护宣传教育工作和环境保护专业培训;
 - 6、建立和管理工厂各污染源的档案,进行环境保护统计工作。

9.1.7 建立科学的环境管理体系

项目建成后,在环境管理方面应加强科学化、现代化和系列化的原则,争取尽快建立和推行 ISO-14000 环境管理体系。

1、建立环境管理体系的理由

具体来说,环境管理体系为企业提供了如下支持:

- (1) 解决环境问题的系统方法;
- (2) 评价、控制重大环境因素的方法:
- (3) 能够明确实施与责任的方法;
- (4) 确保生产与法律、法规符合的方法;
- (5) 降低废物排放与能源消耗并提高国际竞争力的方式;
- (6) 制环境风险、提高环境绩效的方法;
- (7)满足利益方环境期望的方法;
- (8) 树立企业形象、提高国际竞争力的方法:
- (9) 对持续改进与污染预防的承诺。
- 2、环境管理体系的建立步骤和纲要
- (1) 建立步骤

环境管理体系的建立步骤主要包括环境管理体系策划,环境管理体系建立,环境管理体系实施,环境管理体系保持与改进。

(2) 环境管理体系纲要

主要包括了企业环境方针;企业简介与组织机构概述;与环境管理体系相关的重要人员的职责与权限;环境管理体系描述,包括对程序与作业指导书的综述;文件控制。

- 3、环境管理体系程序
- 一般,环境管理体系程序应包括如下方面:
- (1) 环境因素识别与评价程序;
- (2) 环境法律法规管理程序;
- (3) 环境指标与方案管理程序;
- (4) 环境管理体系培训管理程序;

- (5) 环境信息交流程序;
- (6) 文件与记录控制管理程序;
- (7) 能源管理程序:
- (8) 研究开发管理程序;
- (9) 大气污染物控制管理程序:
- (10) 水污染物控制管理程序;
- (11) 环境噪声管理程序;
- (12) 废物管理程序;
- (13) 化学品安全管理程序;
- (14) 环保设施管理程序;
- (15) 监控与测量程序;
- (16) 违章、纠正与预防措施程序;
- (17) 环境记录管理程序;
- (18) 环境管理内部审核程序。

项目建成后,最好尽快通过建立环境管理体系,更进一步地合理利用企业生产环境,合理利用资源、能源和原材料,开展综合利用,减少污染物排放量,在发展生产的同时,为社会、企业和员工创造更好的环境效益,经济效益和社会效益。

9.2污染物排放清单管理要求

9.2.1 工程组成要求

保持现状生产车间及主要生产设备不发生变化。各项环保措施不发生变化,确保氰化氢、氯化氢有效收集、有效处理,杜绝事故性排放。

9.2.2 原辅材料组分要求

项目生产所使用的原辅材料详见第4章节,建设单位不应擅自改用其他物质替代上述原辅材料。

9.2.3 环境保护措施及主要运行参数

项目技改扩建后拟采取的环境保护措施及其主要运行参数见下表:

表 9.2-1 拟采取的环境保护措施及其主要运行参数一览表

) ((>) W	
가 다 다	>= >h		_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	运行参数	
类别	污染源		污染防治措施	风量 (m/h) /直	
		1		径 m/高度 m	
	G1	氯化氢	经收集+碱液喷淋塔+50m 排气筒	60000/1.3/50	
	G1	硫酸雾	排放	00000/1.5/50	
	G2	氨气	经收集+水喷淋塔+50m 排气筒排	40000/1.1/50	
		χ, ,	放	10000/1.1/20	
	G3	氰化氢	经收集+碱性次氯酸钠溶液喷淋 塔+50m 排气筒排放	50000/1.2/50	
		非甲烷总			
		烃			
	G4	TVOC	经收集+水喷淋塔+活性炭吸附	15000/0.6/50	
		颗粒物	+50m 排气筒排放		
		臭气浓度			
	G5	铬酸雾	经收集+焦亚硫酸钠+碱液喷淋 +50m 排气筒排放	15000/0.6/50	
废气		氯化氢	 项目产生的氯化氢、硫酸雾经收		
	G6	硫酸雾	集+碱液喷淋塔+50m 排气筒排放	40000/1.1/50	
	G7	氨气	经收集+水喷淋塔+50m 排气筒排放	50000/1.2/50	
			,,,,		
	G8	氰化氢	经收集+碱性次氯酸钠溶液喷淋 塔+50m 排气筒排放	50000/1.2/50	
		氯化氢	 经收集+碱液喷淋塔+50m 排气筒		
	G9	硫酸雾	排放	50000/1.2/50	
	G10	氨气	经收集+水喷淋塔+50m 排气筒排 放	60000/1.3/50	
		二氧化硫			
				1928.983/0.4/50	
	G11	颗粒物	经收集+50m 排气筒排排放		
		烟气黑度			
	11. 3 2 3 → 1.	州 【赤戊			
废水	生活污水		三级化粪池预处理后排入三角镇		

		生活污水处理厂处理	
	生产废水	生产废水进入高平污水处理有限 公司处理	1
	一般固废	集中收集交废旧物资回收公司处 理或设备保养公司更换并回收	1
固体 废物	危险废物	设危废暂存库收集,交由具有相 关危险废物经营许可证的单位处 理	
	生活垃圾	由环卫部门统一清运处理	
噪声	设备噪声	选用低噪声设备,高噪声设备进 行基础减振处理,加强设备的维 护保养,厂房阻隔	

9.2.4 排放的污染物种类、排放浓度

表 9.2-2 大气污染物排放清单(有组织)

排气 筒编 号	风量 (m³/h) / 直径 (m) /高 度 (m)	污染物	收集量 (t/a)	产生浓度 (mg/m³)	产生速 率(kg/h)	排放量 (t/a)	排放浓度 (mg/m³)	排放速 率(kg/h)
C1	(0000/1.2/50	氯化氢	0.822	2.86	0.17	0.082	0.29	0.017
G1	60000/1.3/50	硫酸雾	0.797	2.77	0.17	0.080	0.28	0.017
G2	40000/1.1/50	氨气	0.418	2.17	0.09	0.042	0.22	0.009
G3	50000/1.2/50	氰化氢	0.967	4.03	0.20	0.097	0.20	0.020
G5	15000/0.6/50	铬酸雾	0.011	0.16	0.002	0.001	0.01	0.0002
C6	40000/1 1/50	氯化氢	0.169	0.88	0.035	0.017	0.09	0.004
G6	40000/1.1/50	硫酸雾	0.060	0.31	0.012	0.006	0.03	0.001
G7	50000/1.2/50	氨气	0.187	0.78	0.039	0.019	0.08	0.004
G8	50000/1.2/50	氰化氢	0.851	3.55	0.177	0.085	0.18	0.018
CO	50000/1.2/50	氯化氢	0.575	2.39	0.120	0.057	0.24	0.012
G9	50000/1.2/50	硫酸雾	0.338	1.41	0.070	0.034	0.14	0.007
G10	60000/1.3/50	氨气	0.107	0.37	0.022	0.011	0.04	0.002

表 9.2-3 大气污染物排放清单(无组织)

楼层	污染物	产生量(t/a)	产生速率(kg/h)	排放量(t/a)	排放速率(kg/h)
2F	氯化氢	0.043	0.01	0.043	0.01

	硫酸雾	0.042	0.009	0.042	0.009
	氨气	0.022	0.005	0.022	0.005
	铬酸雾	0.0002	0.00003	0.0002	0.00003
	氰化氢	0.004	0.001	0.004	0.001
	氯化氢	0.002	0.0004	0.002	0.0004
4F	硫酸雾	0.003	0.001	0.003	0.001
	氰化氢	0.047	0.010	0.047	0.010
	氯化氢	0.007	0.001	0.007	0.001
5F	氨气	0.010	0.002	0.010	0.002
	氰化氢	0.017	0.0035	0.017	0.0035
	氯化氢	0.022	0.005	0.022	0.005
	硫酸雾	0.013	0.003	0.013	0.003
6F	氨气	0.002	0.0005	0.002	0.0005
	铬酸雾	0.0004	0.0001	0.0004	0.0001
	氰化氢	0.023	0.005	0.023	0.005
	硫酸雾	0.011	0.002	0.011	0.002
7F	氨气	0.003	0.001	0.003	0.001
	氰化氢	0.005	0.001	0.005	0.001

表 9.2-4 水污染物排放清单

—————————————————————————————————————								
污水类型	污染物	排放浓度(mg/L, pH 除外)	排放量 t/a	处理方式				
	CODer	≤40	0.0225	经自建三级化粪池预处				
	BOD ₅	≤10	0.0056	理后由市政管网排入三				
生活污水	SS	≤10	0.0056	角镇生活污水处理厂处				
	NH ₃ -N	≤2	0.0028	理,最终达标排放至洪奇 沥水道				
	CODcr	80	3.3197					
	总 Cu	0.5	0.0207					
	总 Ni	0.5	0.0207	经专制管道送至高平污				
生产废水	总 Au	/	/	水处理有限公司进行处				
	总 Ag	0.1	0.0041	理				
	总 P	1	0.0415					
	CN-	0.2	0.0083					

表 9.2-5 生产设备噪声值(离声源 1m 处)

序号	机械名称	噪声等级 dB(A)	排放特征
1	电镀槽电机	65-70	
2	风机	75-80	
3	泵	70-80	连续
4	抽风机	70-80	
5	熔锡炉	65-70	

6	空压机	75-80	
---	-----	-------	--

表 9.2-6 固体废物排放清单

ルノル V 回 F 及 内 J T ルバロ T									
种类		形态	固废种类及编	产生工	产生量	产废周	危险特	处置措施	
			号	序	(t/a)	期	性	之 <u>五</u> .117.65	
-	不合格产品	固态	一般固废	电镀	10	每天	/	 交废旧物资回	
	一般原材料	固态	一般固废	电镀	5	每天	/	文版旧初页图 收公司回收	
	废包装	凹心	双凹/及					似公司凹収	
一般	纯水制备	固态	一般固废	loti →l∨ 4±il	纯水制	1次/半年	/	由设备的保养	
固废	RO 反渗透							公司进行更换	
	膜							并回收处理	
	生活垃圾	固态		生活	7.8	每天	/	交环卫部门处	
			一般固废					理	
	含镍化学品。	固态	HW49	配制槽	1.2	每天	毒性	分类收集,定 期交由具有相 关危险废物经 营许可证的单	
	废包装		(900-041-49)	液					
	含氰化学品	□ +	HW49	配制槽	0.01	每天	毒性		
	废包装	固态	(900-041-49)	液					
	酸碱化学品	田士	HW49	配制槽	_	每天	腐蚀性		
	废包装	固态	(900-041-49)	液	5				
	废封孔剂桶	固态	HW49	+1.71	0.5	每天	毒性		
₩ ₩			(900-041-49)	封孔			易燃性		
危险	槽渣	固态	HW17			每天	腐蚀性		
废物 -			(336-063-17)	电镀	0.9538		毒性		
	废滤芯	艺 固态	HW49	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 1/2 / 🖂	= bt.	位处理		
			(900-041-49)	过滤	0.611	1 次/月	毒性		
	废液	液态	110717	电镀 72.13	72.13	1/6 次 腐蚀性 -30 次/			
			HW17					ı	
			(336-063-17)		年	毒性			
	废离子交换 树脂 固态	田士	HW13	在线回	0.1205	4 17 17/2	±. b.t.		
		固态	(900-015-13)	收系统 0.1396		5 4月/次	毒性		
				L				l	

9.2.5 污染物总量控制指标

1、废气

由工程分析可知,项目排放的废气主要有氯化氢、氰化氢。

2、生活污水

本项目生活污水经自建三级化粪池预处理后排入三角镇生活污水处理厂处理,尾水达广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段一级标准与《城镇污水处理厂污染物排放标准》(GB18918-2002)的一级 A 标准较严者后排入洪奇沥水

道。

3、生产废水

本项目生产废水共计 237.28t/d,分类收集后排入高平污水处理有限公司进行处理, 尾水达到广东省《电镀水污染物排放标准》(DB44/1597-2015)表 1 中珠三角排放限值 后,其中 60%作为回用水经中水回用系统处理后由专用管道返回给金美达公司作为生产 用水使用,另外 40%尾水经高平污水处理有限公司排污口排入洪奇沥水道。

废水种	前处理	综合废	含氰废	含铬废	电镀镍	化学镍	混排废	总生产
类	废水	水	水	水	镍废水	废水	水	废水
技改扩 建前	18.18	105.54	9.36	52.38	43.56	0	8.48	237.5
技改扩 建后	44.66	102.92	23.87	16.77	35.56	2.4	11.1	237.28
增减量	+26.48	-2.62	+14.51	-35.61	-8	+2.4	+2.62	-0.22

表 9.2-7 各类生产废水总量对比单位 t/d

以上总量控制建议指标,为向环境保护主管部门提供的参考依据,最终核准指标应以当地环保主管部门下达的为准。

9.2.6 污染物排放的分时段要求

根据生产工艺特征等情况判断,本项目无须对污染物排放制定分时段要求。

9.2.7 排污口信息及相应执行的环境标准

根据前述分析,本项目拟设置的排污口及相应执行的污染物排放标准见下表。

类别 排放口 执行标准 《电镀污染物排放标准》(GB 21900-2008)表 5 的新建企业大气污染 G1 物排放限值 G2 《恶臭污染物排放标准》(GB14554-93)表2有组织排放限值 《电镀污染物排放标准》(GB 21900-2008)表 5 的新建企业大气污染 G3 废气污 物排放限值 染物 广东省地方标准《固定污染源挥发性有机物综合排放标准》 (DB44/2367-2022)表1挥发性有机物排放限值、广东省地方标准《大 G4 气污染物排放限值》(DB44/27-2001)(第二时段)二级标准限值、 《恶臭污染物排放标准》(GB14554-93)表 2 有组织排放限值 《电镀污染物排放标准》(GB 21900-2008)表 5 的新建企业大气污染 G5 物排放限值

表 9.2-8 拟设置的排污口及执行标准

	G6	《电镀污染物排放标准》(GB 21900-2008)表 5 的新建企业大气污染物排放限值			
	G7	《恶臭污染物排放标准》(GB14554-93)表 2 有组织排放限值			
	G8	《电镀污染物排放标准》(GB 21900-2008)表 5 的新建企业大气污染物排放限值			
	G9	《电镀污染物排放标准》(GB 21900-2008)表 5 的新建企业大气污染物排放限值			
	G10 《电镀污染物排放标准》(GB 21900-2008)表 5 的新建企业物排放限值				
	G11	广东省地方标准《锅炉大气污染物排放标准》(DB44/765-2019)表 2 新建锅炉大气污染物排放浓度限值			
水污染物	生活污水排放口	广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段一级标准与《城镇污水处理厂污染物排放标准》(GB18918-2002)的一级A标准较严者			
	电镀废水排放口	广东省地方标准《电镀水污染物排放标准》(DB44/1597-2015)表 1 中 珠三角排放限值要求			
噪声	厂界四周	《工业企业厂界环境噪声排放标准》(GB12348-2008)2 类			
固体 废物	危险废物临时堆放 场所	《危险废物转移联单管理办法》、《危险废物贮存污染控制标准》 (GB18596)			

9.2.8 环境风险防范及环境监测

根据前述分析,本项目的风险防范主要包括:

- (1)为了防范事故和减少危害,建设单位应按规范编制环境事件应急预案,并落 实本评价提出的各项风险防范和应急措施。
- (2)项目设置 50m³ 的风险事故池,并与高平污水处理有限公司联动,确保事故状态下收集消防废水和泄漏的化学品,确保不对外环境产生影响。
- (3)建设单位应在本厂区的雨水系统出水口处加装截断阀,用以截留含污染物的事故废水。
- (4)本项目运营期定期组织职工开展应急演练,提高环境应急处理能力和素质。 当发生事故时,按照事故实际情况,大气监测布点应在厂区及附近敏感点等。严格控制 事故时气态污染物的扩散范围,以及浓度变化。根据在敏感点监测点的监测浓度决定此 敏感点是否进行人员疏散。监测项目:氯化氢、氰化氢;发生火灾事故时还应监测烟尘、 CO等。监测频次:1小时取样一次。

9.2.9 社会公开的信息内容

参照《企业事业单位环境信息公开办法》(环境保护部第 31 号令)的要求,建设单位应公开本项目的环境信息。

本项目建设单位向社会公开的信息内容如下:

- (1)基础信息,包括单位名称、组织机构代码、法定代表人、生产地址、联系方式,以及生产经营和管理服务的主要内容、产品及规模。
- (2)排污信息,包括主要污染物及特征污染物的名称、排放方式、排放口数量和 分布情况、排放浓度和排放量、超标情况,以及执行的污染物排放标准等。
 - (3) 防治污染设施的建设和运行情况。
 - (4) 建设项目环境影响评价及其他环境保护行政许可情况。
 - (5) 突发环境事件应急预案。
 - (6) 其他应当公开的环境信息。

9.3环境监测计划

建设项目的环境监测目的是控制污染、保护环境。因此需根据本项目的工程特点、排污状况以及针对不利环境的因素所采取的措施确定其环境监测计划,并加以执行,以 使项目在建设期和营运期的各种环境问题及时发现并加以解决,以保证在发展经济的同时,环境质量不下降。

监测原则:控制和监督各污染物排放达标状况,保证监测质量和技术数据的代表性和可靠性,对波动幅度大和趋于超标的污染物及新发生的污染物应加强监测,按需要增加监测频度,并及时上报有关环境监测部门。

9.3.1 环境质量监测计划

9.3.2 污染源监测计划

9.3.3 非正常排放状况监测

事故监测要根据发生事故类型、事故影响大小及周围环境情况等,视具体情况对大气、地表水、土壤或地下水进行监测,同时对事故发生的原因、泄漏量、污染程度以及

采取的处理措施、处理效果等进行统计、建档,并及时上报有关环保部门。

当发生非正常排放时,应严格监控、及时监测。项目涉及非正常排放主要为废气方面,废气非正常排放应重点做好对下风向受影响范围内的居民点污染物浓度进行连续监测工作,直到恢复正常的环境空气状况为止。

9.3.4 监测数据分析与管理

根据国家标准《环境保护图形标志-排放口(源)》、国家环保总局《排污口规范化整治要求(试行)》、《广东省污染源排污口规范化设置导则》(粤环【2008】42号)的技术要求,企业所有排放口(包括水、气、声、渣)必须按照"便于采样、便于计量监测、便于日常现场监督检查"的原则和规范化要求,设置与之相适应的环境保护图形标志牌,绘制企业排污口分布图,同时对污水排放口安装流量计,对治理设施安装运行监控装置。排污口的规范化要符合当地环保主管部门的有关要求。

(1) 废气排放口

废气排放口必须符合规定的高度和按《污染源监测技术规范》便于采样、监测的要求,设置直接不小于 75mm 的采样口。如无法满足要求的,其采样口与环境监测部门共同确认。

建议本项目的排气筒旁设置标志牌。

(2) 废水排放口

本项目废水排污口需设置1个生活污水排放口、5个生产废水排放口。

(3) 固定噪声源

按规定对固定噪声源进行治理,并在边界噪声敏感点,且对外界影响最大处设置标志牌。

(4) 固体废物贮存场

一般工业固废和生活垃圾应设置专用堆放场地,采取防止二次扬尘措施;危险废物 必须设置专用堆放场地,有防扬散、防流失、防渗漏等措施。应符合《中华人民共和国 固体废物污染环境防治法》、《广东省固体废物污染环境条例》及《危险废物贮存污染 控制标准》(GB 18597-2001)和《一般工业固体废物贮存、处理置场污染控制标准》(GB18599-2001)的有关规定。

(5) 设置标志牌要求

环境保护图形标志牌由国家环保总局统一定点制作,并由中山市环境监察部门根据 452 企业排污情况统一向广东省环境保护局订购。企业排污口分布图由市环境监理部门统一 绘制。排放一般污染物排污口(源),设置提示式标志牌,排放有毒有害等污染物的排 污口设置警告式标志牌。

标志牌设置位置在排污口(采样点)附近且醒目处,高度为标志牌上缘离地面 2m。排污口附近 1m 范围内有建筑物的,设平面式标志牌,无建筑物的设立式标志牌。

规范化排污口的有关设置(如图形标志牌、计量装置、监控装置等)属环保设施,排污单位必须负责日常的维护保养,任何单位和个人不得擅自拆除,如需变更的须报环境监理部门同意并办理变更手续。

9.3.5 三同时验收表

项目"三同时"验收一览表如下:

表 9.3-1 项目竣工环境保护"三同时"验收一览表

污染物						
要素	污染源	污染物因子	排放量 (t/a)	环保设施	验收执行标准	监测点位
	G1	氯化氢	0.074	经收集+碱液喷淋塔+50m 排气筒排放	《电镀污染物排放标准》	G1 酸雾废气排气筒
		硫酸雾	0.080		(GB21900-2008)	
	G2	氨气	0.021	经收集+水喷淋塔+50m 排气筒排放	《恶臭污染物排放标准》(GB14554-93)	G2 碱性废气排气筒
	G3	氰化氢	0.097	经收集+碱性次氯酸钠溶液喷淋塔 +50m 排气筒排放	《电镀污染物排放标准》 (GB21900-2008)	G3 含氰废气排气筒
	G4	非甲烷总烃	0.178	经收集+水喷淋塔+活性炭吸附+50m 排气筒排放	广东省地方标准《大气污染物排放限 值》(DB44/27-2001)	G4 有机废气排气筒
		TVOC			广东省地方标准《固定污染源挥发性有 机物综合排放标准》(DB44/2367-2022)	
		臭气浓度	少量		《恶臭污染物排放标准》(GB14554-93)	
废气	G5	铬酸雾	0.001	经收集+焦亚硫酸钠+碱液喷淋+50m 排气筒排放	《电镀污染物排放标准》 (GB21900-2008)	G5 铬酸雾废气排气筒
	G6	氯化氢	0.017	经收集+碱液喷淋塔+50m 排气筒排放	《电镀污染物排放标准》	G6 酸雾废气排气筒
		硫酸雾	0.006		(GB21900-2008)	
	G7	氨气	0.019	经收集+水喷淋塔+50m 排气筒排放	《恶臭污染物排放标准》(GB14554-93)	G7 酸雾废气排气筒
	G8	氰化氢	0.085	经收集+碱性次氯酸钠溶液喷淋塔 +50m 排气筒排放	《电镀污染物排放标准》 (GB21900-2008)	G8 含氰废气排气筒
	G9	氯化氢	0.042	经收集+碱液喷淋塔+50m 排气筒排放	《电镀污染物排放标准》	G9 酸雾废气排气筒
		硫酸雾	0.027		(GB21900-2008)	
	G10	氨气	0.011	经收集+水喷淋塔+50m 排气筒排放	《恶臭污染物排放标准》(GB14554-93)	G10 碱性废气排气筒
	G11	二氧化硫	0.086	经收集+50m 排气筒排排放	《锅炉大气污染物排放标准》	G11 锅炉废气排气筒

	氮氧化物	0.130		(DB44/765-2019)	
	颗粒物	0.060			
	烟气黑度	1级			
	氯化氢	0.039		广东省地方标准《大气污染物排放限	
	硫酸雾	0.042	车间无组织排放	值》(DB44/27-2001)无组织排放监控	
				浓度限值	
 车间 2F	氨气	0.011		《恶臭污染物排放标准》(GB14554-93)	
+ HJ 2I	X ((新扩改建二级标准	
	铬酸雾	0.000		广东省地方标准《大气污染物排放限	
	氰化氢	0.004		值》(DB44/27-2001)无组织排放监控	
	非甲烷总烃	0.070		浓度限值	
	氯化氢	0.002		广东省地方标准《大气污染物排放限	
车间 4F	硫酸雾	0.003	车间无组织排放	值》(DB44/27-2001)无组织排放监控	
	氰化氢	0.047		浓度限值	
				广东省地方标准《大气污染物排放限	厂界四周
	氯化氢	0.007	车间无组织排放	值》(DB44/27-2001)无组织排放监控	
				浓度限值	
 车间 5F	氣气	氨气 0.010		《恶臭污染物排放标准》(GB14554-93)	
十四 31	女(人)			新扩改建二级标准	
	氰化氢	0.017		广东省地方标准《大气污染物排放限	
				值》(DB44/27-2001)无组织排放监控	
				浓度限值	
	氯化氢	0.017		广东省地方标准《大气污染物排放限	
 车间 6F	F 硫酸雾	硫酸雾 0.003	 车间无组织排放	值》(DB44/27-2001)无组织排放监控	
1 1 1 OI.			十四九组织加	浓度限值	
	氨气	0.002		《恶臭污染物排放标准》(GB14554-93)	

					新扩改建二级标准	
		铬酸雾	0.000		广东省地方标准《大气污染物排放限	
		氰化氢	0.023		值》(DB44/27-2001)无组织排放监控	
		育(化全(0.023		浓度限值	
		硫酸雾	0.011		广东省地方标准《大气污染物排放限	
		氨气	0.003	车间无组织排放	值》(DB44/27-2001)无组织排放监控	
	车间 7F				浓度限值	
	7-1-5 /1	氰化氢	0.005		广东省地方标准《大气污染物排放限	
		非甲烷总烃	0.029		值》(DB44/27-2001)无组织排放监控	
		11 1 /// 275.745	0.029		浓度限值	
					广东省地方标准《水污染物排放限值》	
	生活污	CODCr、BOD₅、 氨氮、SS 等	10080t/a	经三级化粪池预处理后经市政污水管 网排入三角镇生活污水处理厂处理, 最后排至洪奇沥水道	(DB44/26-2001) 第二时段一级标准与	废水排放口
	水				《城镇污水处理厂污染物排放标准》	
废水					(GB18918-2002)的一级 A 标准较严	
//20141					者	
	电镀废	CODCr、金属离		 排入高平污水处理有限公司处理,最	广东省《电镀水污染物排放标准》	
	水	子	81948t/a	后排至洪奇沥水道	(DB44/1597-2015)表1中珠三角排放	废水排放口
					限值	
噪声	设备噪	LAeq		选用低噪设备、对高噪设备进行基底	《工业企业厂界环境噪声排放标准》	一 一 界四周
	声	-		减振、合理布局	(GB12348-2008) 2 类标准	, , , , , , ,
固体		一般废物		一般工业固废仓库	满足环保要求	
	生产过	4. 74. 4			《危险废物转移联单管理办法》、《危	
废物	程	危险危废		危险废物暂存库	险废物贮存污染控制标准》	
					(GB18597-2023)	
	员工生 活	生活垃圾		垃圾桶、垃圾箱	满足环保要求	

环境		1、制定风险防范措施和应急预案; 2、	
风险	风险防范	 员工定期培训演练,应急设备处于正 常状态; 3、依托电镀基地高平污水处	
		理有限公司进行事故应急联动	

10 环境影响评价结论

10.1 工程概况

中山市金美达金属表面处理有限公司(以下简称"金美达公司")位于中山市三角镇高平化工区,从事五金电镀件、塑料电镀件、首饰饰品生产,镀种涉及铜、镍、仿金、锌、铬、金、银,金美达公司于 2002 年获得中山市环境保护局审批(中环建[2002]95号),原审批建设自动、手动镀锌线各 1 条,脉冲开关电源 14 台、可控硅电源 11 台、过滤机 19 台、冷水机 1 台、干燥烘道 1 条(燃柴油)、热水炉 3 台(燃柴油)、抽风系统 4 套和压缩机 3 台,准许排放生产废水 280 吨/天至三角镇高平污水处理有限公司处理:金美达公司于 2006 年进行扩建,2006 年获得中山市环境保护局审批(中环建表[2006]1175号),审批建设 4 条电镀生产线:自动垂直式五金镀锌电镀生产线 1 条、镀银(金)电镀生产线 1 条、塑胶电镀生产线 1 条、五金镀镍(铬)仿金电镀线 1 条;金美达公司于 2013 年进行技改扩建,获得中山市环境保护审批(中环建书[2013]105号),审批建设 5 条电镀生产线:自动垂直式五金镀锌电镀生产线 1 条、镀银(金)电镀生产线 1 条、镀银(金)电镀生产线 1 条、镀银(金)电镀生产线 1 条、镀银(金)电镀生产线 1 条、短镍(铬)仿金电镀线 1 条、ABS自动电镀线 2 条、准许排放生产废水237.5吨/天(71250吨/年)、生活污水 36.9吨/天(11070吨/年)。

由于生产那时建设的生产线无法满足市场发展需求,该厂已于 2017 年停产,并拆除了原有设备,公司的电镀业务暂时为全部委外加工。为了保证生产业务的顺利进行,现金美达公司拟重新启动建设,将公司的生产线全部进行升级改造,引进先进的电镀生产线,技改扩建后的金美达公司拟设置 5 条电镀生产线(其中 21 条端子线、1 条塑胶线及 3 条其他五金线)及 6 条辅助生产线(分别为: 8 条端子连续镀镍金锡自动线、2 条端子连续镀铜镍金锡自动线、9 条端子连续镀镍钯金锡自动线、1 条挂镀镍铬半自动线、1 条端子连续镀银自动线、1 条端子连续镀镍钯金铑钉自动线、1 条电铸镍半自动线、1 条塑胶挂镀铜镍铬自动线、1 条滚镀铜镍金锡半自动线、1 条连续电泳半自动线、1 条水转印线、1 条 TypeC 滚筒研磨手动线、1 条 C70 滚筒研磨手动线、1 条散件清洗手动线、1 条磁力研磨手动线),工件总电镀面积 119.45 万 m²/a;产生生产废水 237.28t/d。

10.2 环境质量现状分析

1、环境空气

根据《中山市 2021 年大气环境质量状况公报》可知,2021 年中山市全年均达标的因子有二氧化硫、一氧化氮、PM₁₀、PM_{2.5}、臭氧和二氧化氮。大气环境现状补充监测及引用监测结果表明,氯化氢、TVOC、硫酸雾、氨监测指标符合《环境影响评价技术导则大气环境》(HJ 2.2-2018)中附录 D 其他污染物空气质量浓度参考限值;总悬浮颗粒物监测指标符合《环境空气质量标准》(GB3095-2012)中的二级标准及2018 年修改单参考限值;非甲烷总烃满足《大气污染物综合排放标准详解》中的标准限值;臭气浓度满足《恶臭污染物排放标准》(GB14554-93)的要求;铬酸雾满足《工业企业设计卫生标准》(TJ36-79)中居住区容许浓度要求;氰化氢满足前苏联(1974)居住区大气中有害物质的最大允许浓度要求。

2、地表水

本次现状监测洪奇沥水道和黄沙沥水道监测断面各监测指标均符合《地表水环境质量标准》(GB3838-2002)III类标准要求。总体来说,评价范围内本次监测的各水体水质均能满足相应功能区划要求

3、地下水

项目所在区域地下水环境执行《地下水环境质量标准》(GB/T14848-2017)V类标准,根据监测和评价结果,所有监测点位水质均达到《地下水质量标准》(GB/T14848-1993) V类标准。

4、声环境

由监测结果可知,项目周边、高平村昼间和夜间噪声均符合《声环境质量标准》 (GB3096-2008)2类标准。

5、土壤

S1~S6监测点土壤环境质量均满足《土壤环境质量建设用地土壤污染风险管控标准》 (GB36600-2018)(试行)中的第二类用地筛选值,项目所在地及周边土壤环境质量现状 良好。

10.3 环境影响预测与评价

(1) 大气环境影响预测与评价

本项目排放的主要污染物包括氯化氢、硫酸雾、氨气、氰化氢、铬酸雾、非甲烷总烃、TVOC、臭气浓度、二氧化硫、氮氧化物、颗粒物、烟气黑度。由估算模型(AERSCREEN)计算结果可知,本建项目污染物正常排放情况下,污染物最大地面空气质量占标率 P_{max}为 11.13%,项目大气环境影响评价工作为一级评价。本项目所在区域为环境空气达标区域。

通过对大气主要污染物排放量核算,建设项目氯化氢、硫酸雾、氨气、氰化氢、铬酸雾、非甲烷总烃(TVOC)、二氧化硫、氮氧化物、颗粒物排放量分别为 0.231t/a、0.189t/a、0.109t/a、0.278t/a、0.002t/a、0.241t/a、0.086t/a、0.130t/a、1.273t/a。

因此,在做好污染防治措施的管理和维护保养时,本项目排放的大气污染物对评价区域内的大气环境质量影响程度在可接受范围内。

(2) 地表水环境影响分析与评价

项目生活污水经三级化粪池预处理达广东省地方标准《水污染物排放限值》 (DB/26-2001)第二时段三级标准后,纳入三角镇生活污水处理厂处理。生产废水经专制管道排入高平污水处理有限公司处理,对周边水环境影响不大。

(3) 声环境影响预测分析结论

建设单位通过选用低噪设备,对高噪设备进行基底减振、合理布局等措施降低项目 噪声的影响,则本项目运营过程产生的噪声对周边环境及项目内的工作人员影响不大。

(4) 固体废物影响分析结论

本项目运营期产生的固体废物主要包括:不合格产品、一般原材料废包装、危险化学品废包装、废滤芯、废槽渣、废液、废 RO 反渗透膜、废离子交换树脂和生活垃圾等。危险化学品废包装、废滤芯、废槽渣、废液、废离子交换树脂等危险废物定期交由具有相关危险废物经营许可证的单位处置;废 RO 反渗透膜由设备保养公司更换并回收;不合格产品、一般原材料废包装交废旧物资回收公司处理;生活垃圾交环卫部门处理。则经这些措施处理后项目固体废物对周边环境的影响不大。

(5) 地下水环境影响评价结论

正常情况下,项目生产车间位于生产车间6楼,生产区域均设置防腐防渗措施,不会对地下水环境造成不良影响;当废水收集池发生泄漏,污染物在项目所在区域运移速率慢,运移距离短,对地下水其他区域影响有限,只要及时发现污染物泄露并采取应急响应终止污染泄露,对污染的土壤和地下水采取及时修复,则事故状况下污染物对地下水环境的影响不大。

(6) 土壤环境影响评价结论

项目的镍、铜对评价范围内的土壤环境影响很小,叠加项目所在区域的现状值后满足《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)表 2中第二类用地的筛选值;项目氰化物未满足《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)表 2中第二类用地的筛选值。通过采取措施后,项目对周边土壤环境影响不大。

(7) 环境风险评价结论

技改扩建后项目风险类型主要为危险化学品、危险废物储存袋/桶损坏导致物质泄漏、扩散事故;生产废水输送系统损坏导致污染物事故排放;厂区火灾造成的次生污染;废气处理设施故障、失效,导致废气未经有效治理直接排放。建设单位需加强职工的安全生产教育,提高风险意识;建立一套完整的管理规程、作业规章和应急计划,并在各关键环节配备在线监控、预警和应急装置,在出现预警情况时能及时处理,消除事故隐患,发生事故时有相应的风险应急措施;根据项目的实际情况编制突发事故应急预案,并认真落实环境风险防范措施,则发生有毒有害物质泄漏、废水及火灾事故排放、废气事故排放的机率将大为降低,当发生上述事故时采用相应的应急措施,可以把事故的危害程度控制在可接受的范围。

10.4 环境保护措施

10.4.1 大气污染物防治措施

废气包括电镀生产线产生废气、电泳、喷漆、水转印有机废气和天然气锅炉燃天然气废气,项目车间2楼酸雾废气(氯化氢、硫酸雾)收集后经碱液喷淋塔处理后通过50m排气筒G1排放,车间2楼碱性废气(氨气)收集后经水喷淋塔处理后通过50排气筒461

G2 排放,车间 2 楼及车间 4 楼含氰废气(氰化氢)收集后经碱性次氯酸钠溶液喷淋塔 处理后通过 50 排气筒 G3 排放,喷漆、电泳、水转印有机废气收集后经水喷淋+活性炭 吸附装置处理, 最后通过 50m 排气筒 G4 排放, 车间 2 楼及车间 6 楼含铬废气(铬酸雾) 收集后经碱液喷淋塔处理后通过 50 排气筒 G5 排放,车间 4 楼及 5 楼酸雾废气(氯化氢、 硫酸雾)收集后经碱液喷淋塔处理后通过 50m 排气筒 G6 排放,5 楼碱性废气(氨气) 收集后经水喷淋塔处理后通过 50 排气筒 G7 排放,车间 5 楼、6 楼及 7 楼含氰废气(氰 化氢) 收集后经碱性次氯酸钠溶液喷淋塔处理后通过 50 排气筒 G8 排放,车间 6 楼及 7 楼酸雾废气(氯化氢、硫酸雾)收集后经碱液喷淋塔处理后通过 50m 排气筒 G9 排放, 车间 6 楼及 7 楼碱性废气(氨气)收集后经水喷淋塔处理后通过 50 排气筒 G10 排放, 燃天然气锅炉天然气燃烧废气收集后通过 50m 排气筒 G11 排放。项目外排氯化氢、硫 酸雾、氰化氢、铬酸雾执行《电镀污染物排放标准》(GB 21900-2008)表 5 的新建企 业大气污染物排放限值,氨、臭气浓度执行《恶臭污染物排放标准》(GB14554-93)表 2 有组织排放限值,非甲烷总烃、TVOC 执行广东省地方标准《固定污染源挥发性有机 物综合排放标准》(DB44/2367-2022)表 1 挥发性有机物排放限值,颗粒物执行广东省 地方标准《大气污染物排放限值》(DB44/27-2001)(第二时段)二级标准限值,天 然气燃烧废气外排二氧化硫、氮氧化物、颗粒物执行广东省地方标准《锅炉大气污染物 排放标准》(DB44/765-2019)表 2 新建锅炉大气污染物排放浓度限值。

10.4.2 水污染物防治措施

生活污水经自建三级化粪池预处理后排入三角镇生活污水处理厂处理,尾水达广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段一级排放标准与《城镇污水处理厂污染物排放标准》(GB18918-2002)的一级 A 标准较严者后排入洪奇沥水道。全厂生产废水分类经专制管道引入高平污水处理有限公司处理,尾水达广东省《电镀水污染物排放标准》(DB44/1597-2015)表 1 中珠三角排放限值后排入洪奇沥水道,对洪奇沥水道水质影响不大。

10.4.3 噪声污染物防治措施

建设单位通过选用低噪设备、对高噪设备进行基底减振、合理布局等措施降低噪声 对周边环境的影响。经采取上述措施后,项目噪声对周边环境影响不大。

10.4.4 固废污染物防治措施

本项目运营期产生的固体废物主要包括:不合格产品、一般原材料废包装、危险化学品废包装、废滤芯、废槽渣、废液、废 RO 反渗透膜、废离子交换树脂和生活垃圾等。危险化学品废包装、废滤芯、废槽渣、废液、废离子交换树脂等危险废物定期交由具有相关危险废物经营许可证的单位处置;废 RO 反渗透膜由设备保养公司更换并回收;不合格产品、一般原材料废包装交废旧物资回收公司处理;生活垃圾交环卫部门处理。则经这些措施处理后项目固体废物对周边环境的影响不大。

10.4.5 选址合理合法性评价结论

中山市金美达金属表面处理有限公司技改扩建项目位于中山市三角镇高平化工区,符合国家、省、市相关的环保法律法规、政策、规划要求,符合中山市城市总体规划、三角镇总体规划、高平工业区电镀基地规划要求。项目不占用基本农田保护区、自然保护区、饮用水水源保护区等用地,选址合理。

10.5 公众参与结论

根据《环境影响评价公众参与办法》,本次环评过程建设单位进行了两次公示,在编制环评报告书的过程中进行第一次公示,公示形式为网站公示和现场张贴公告的方式; 环评报告初稿完成之后,中山市金美达金属表面处理有限公司进行了第二次公示,第二次公示包括网站公示、现场张贴公告和登报公示的方式。第一次及第二次信息公开媒体公示未收到任何关于本项目建设的反馈意见。

建设单位承诺落实好环评报告中提出的各项环境保护措施以及风险防范措施,保证资金到位,环保工程的"三同时",使营运期的废气和废水达标排放,杜绝出现扰民现象。

10.6 总结论

中山市金美达金属表面处理有限公司位于中山市三角镇高平化工区,符合国家、省、 市相关的环保法律法规、政策、规划要求,符合中山市城市总体规划、三角镇总体规划、 高平化工区规划要求。项目不占用基本农田保护区、自然保护区、饮用水水源保护区等 用地,选址合理。建设项目应严格执行"三同时"规定,落实本报告书中所提出的环保措施,同时确保环保处理设施正常运行,并加强清洁生产管理,杜绝污染事故,做好环境风险事故的防范,从环境保护的角度来看,该项目的建设是可行的。